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Introduction and Overview
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Motivation

» Suppose you need a path...

- ...for multiple agents...

» ...as quickly as possible...

- ...but with quality guarantees

* What are the basic approaches that you might
consider when building an approach to solve the
problem?
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Introduction

- Baseline Assumptions of Heuristic Search
- Exponential & Polynomial Algorithms
- Bidirectional Search
» Exponential & Polynomial Heuristics
- Examples & case studies
» Constraints
- Any-Angle Search
* Multi-Agent Path Planning
- Tools for teaching/learning search concepts
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Materials

» Workshop materials:
» http://movingai.com/AAAI-HS20/

« Qutline, Slides, Demos
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Demos

https://movingai.com/SAS/

Single-Agent Search Demo Page

This page lists demos that can be used for teaching and exploring algorithms in single-agent search.

e Search Algorithms

DES, BES, DFID on an exponential tree

Dijkstra, A* and Weighted A* on a graph

A* on a grid map

IDA* on the 3x2 Sliding tile puzzle

NBS on a grid map

JPS on a grid map

Abstraction and refinment in grid maps

e Heuristics

IDA* with Pattern Databases

IDA* with Min-Compressed Pattern Databases

A* with inconsistent heuristics

Differential Heuristics

Transit Routing

e Constraints
o Reach
o Bounding Boxes

e Theory
o Necessary expansions in unidirectional and bidirectional search
o The Must-Expand graph (GMX) for bidirectional search
o Fractional meeting points for bidirectional search algorithms
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Demos

https://movingai.com/SAS/

Single-Agent Search Demo Page

This page lists demos that can be used for teaching and exploring algorithms in single-agent search.

e Domains

o

The Sliding Tile Puzzle

e Search Algorithms

O O O 0O OO0 OO0 O O o

DES, BES, DFID on an exponential tree
Dijkstra's Algorithm on a graph (integer weights)
Dijkstra, A* and Weighted A* on a graph

A* on a grid map

IDA* on the 3x2 Sliding tile puzzle

NBS on a grid map

JPS on a grid map

Abstraction and refinment in grid maps

Abstraction and refinment on dynamic maps with dynamic costs
Weighted A* - Overhead of Re-expansions

IBEX / BTS and IDA* on the 3x2 sliding tile puzzle

e Heuristics

O O O O o©o

o

IDA* with Pattern Databases

IDA* with Min-Compressed Pattern Databases
A* with inconsistent heuristics

Differential Heuristics

FastMap Heuristics

Transit Routing

e Constraints

o

o

Reach
Bounding Boxes

e Theory

o

o

o

Necessary expansions in unidirectional and bidirectional search
The Must-Expand graph (GMX)_for bidirectional search
Fractional meeting points for bidirectional search algorithms
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Problem Definition

* Given:
- A start state & goal state (or goal test)
* A successor & cost function
* A heuristic function
* Return:
* A path from the start to the goal
- With optimal cost
» Black box assumption
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Terminology

* g(n) - Cost from start to n in the search

* h(n) - Estimated cost from n to the goal

* c(a, b) - optimal cost from ato b

11
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Heuristics

» Heuristic function maps a state to a distance/cost
- Estimate of distance/cost to the goal
- Admissible heuristic doesn’t overestimate true cost

* h(s, g) =c(s, 9)

- Consistent heuristic obeys triangle inequality
(undirected graphs)

) |h(aag) o h(bv g)| < C(CL, b)
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Exponential Domains

» Characterized by:
- Branching factor b
* Depth of tree, d

» Assume a tree not a graph

AAAIl 2020 Tutorial On Heuristic Search
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An Optimal Admissible Tree Search
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Artificial Intelligence, 1985
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Uninformed Algorithms

» Basic graph algorithms
* DFS
* Not necessarily optimal if goal not at a leaf
- BFS
* High memory requirement
 Can use external-memory
- DEMBFS - IUCAI 2019 (Hu & Sturtevant, 2019)

AAAIl 2020 Tutorial On Heuristic Search

22




UNIVERSITY OF

& ALBERTA
Uninformed Algorithms

- DFID
* Depth-limited DFS
* Increment the depth after each search

» Asymptotically optimal in node expansions and time
» Assuming no other information (eg heuristic)

AAAIl 2020 Tutorial On Heuristic Search
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Demo

http://www.movingai.com/SAS/EXP
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Demo tasks

- Choose a goal where DFS is faster than DFID
* How much faster?

- Choose a goal where DFID is faster than DFS
* How much faster?

AAAIl 2020 Tutorial On Heuristic Search
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Sample Domain/Heuristic

- Sliding tile puzzle
 Manhattan distance

« Sum of distances from
each tile to its goal
location

26
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IDA™

* Instead of iteratively searching depth layers (DFID)
» Search f-cost layers

* 1(n) = g(n)+h(n)

- Estimate of the total path length

« Searching from shortest to longest paths

 Expected running time O(bd)

Depth-First Iterative Deepening,
An Optimal Admissible Tree Search

Richard Korf
Artificial Intelligence, 1985

AAAIl 2020 Tutorial On Heuristic Search
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Demo

http://www.movingai.com/SAS/IDA



IDA* - Unit Costs
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Demo Tasks

 What states have low heuristic value but are far from
the goal?

* Does IDA* ever visit the same state twice in the
same iteration?

30
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IDA* Worst Case

* Analysis assumes tree grows exponentially
» Otherwise might expand (in tree with N nodes):

N)YN+ 1
424344 N= D )

* If N = b9, this is b2d expansions!
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Getting the next bound

- Can be conservative:
- IDA* (Korf, 1985)
- Can try to build a predictor based on past:
* IDA*cR (Sarkar et al, 1990)
* IDA*im (Burns & Ruml, 2013)
» Can model the state space growth:
- EDA* (Sharon et al, 2014)
» Want to guarantee exponential growth in expansions

AAAIl 2020 Tutorial On Heuristic Search
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Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

mr 1l T

Binary Search

- Running time: log(i)

AAAIl 2020 Tutorial On Heuristic Search
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Exponential Search for Bounds

* Imagine array as all floating point numbers
» Algorithm for searching sorted/unbounded array

mr 1l T

Binary Search

* Problem: Searching with large fdoes extra work

AAAIl 2020 Tutorial On Heuristic Search
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Budgeted search

- Like exponential search on f-costs

=272 F=130.7
{f: 10 {n = 200 (2X) {n = 800 (8X)
n =100 f: o0
1112 14 18 26 30 34 {f: 4?2

AAAIl 2020 Tutorial On Heuristic Search
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IBEX - BTS

Find next f-cost bound:

1. Search with conservative f, «© budget (IDA*)
2. Grow f bound exponentially

3. Do binary search on f Constant budget

Iterative Budgeted Exponential Search
Malte Helmert, Tor Lattimore, Levi H. S.
Lelis, Laurent Orseau, Nathan R. Sturtevant
I1JCAI, 2019

AAAIl 2020 Tutorial On Heuristic Search
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f-limit: (13.50+14.45)/2=13.97
nodes: [4,16]
expand: 11

f: 13.97

nodes: 11

Previous
lteration



f-limit: 14.00
nodes: [22,»]
expand: 0

nodes 1?

IDA*

f-cost 14



f-limit: 14.20+2/0=15.20
nodes: [22,88] EX P
expand: 0

nodes 12 18
— :

f-cost 14 15.2



f-limit: 16.20+2/21=18.20
nodes: [22,88] EX P

expand: 0

nodes 1? 18 >88

f-cost 14 15.2 18.2



f-limit: (16.20+18.15)/2=17.17
nodes: [22,88]
expand: 0

BIN

nodes 1 2 18 47 >8I8

f-cost 14 15.2 17.17 18.2



Demo

https://www.movingai.com/SAS/BTS




IDA* BTS

f-limit: 11.00
nodes: [0,]
expand: 1

80.0S 12.7s
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53

Summary

 IBEX/BTS
» Avoids worst case of IDA* - O(N log C*)
- Exactly IDA* in best case

AAAIl 2020 Tutorial On Heuristic Search




Polynomial Algorithms
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Recall: Exponential Domains

- Characterized by:
* branching factor b
- depth of tree, d

» Usually assume a tree not a graph

AAAIl 2020 Tutorial On Heuristic Search
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Polynomial Domains

» Polynomial domains grow according to dimension of
state space

° r2, r3, dk

AAAIl 2020 Tutorial On Heuristic Search
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Polynomial Domains

- Often still have constant branching factor b
- |If we search to depth d
* bd states?
- dk states?

- Difference is due to duplicate detection

AAAIl 2020 Tutorial On Heuristic Search
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Duplicate Detection

* Most exponential domains aren’t actually trees
* Most polynomial domains contain many duplicates
» Solution:

* Closed list to detect duplicates

AAAIl 2020 Tutorial On Heuristic Search
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Terminology

* OPEN - Priority queue of states
» CLOSED - Hash table

- EXPAND - Take from OPEN and generate successors
- GENERATE - Get state from parent and process

* OPEN - States that are GENERATED but not EXPANDED
« CLOSED - States that have been EXPANDED

AAAIl 2020 Tutorial On Heuristic Search
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Best First Search

e Put start onto OPEN

 While OPEN not empty / solution not found

e Among all states on OPEN:
e Select the state with lowest cost
e EXPAND it

e EXPAND:
e GENERATE each successor s
e if s on CLOSED, discard
e else place/update s on OPEN

AAAIl 2020 Tutorial On Heuristic Search
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A* / Best First Search

- Best measure is by f-cost

*1(n) = g(n) + h(n)

* Prioritize states that have a shorter cost estimate

« With a consistent heuristic,
states never taken off of CLOSED

AAAIl 2020 Tutorial On Heuristic Search
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Demo

http://www.movingai.com/SAS/ASG
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Demo task

» Build a graph where a state is first generated with
suboptimal g-cost

* (eg the f-cost of a state on open decreases)

AAAIl 2020 Tutorial On Heuristic Search
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A* (B/B’)

- A* with a consistent heuristic is optimal®

» With an inconsistent heuristic A* might do 2N
expansions of N states

* Inconsistency comes from compressed or learned
heuristics

- B and B’ immediately propagate shorter paths
* Will do at most N2 expansions of N states

Iterative Budgeted Exponential Search




Inconsistent Heuristics

Compressed Differential Compressed Differential
Heuristic without BPMX Heuristic with BPMX

L, \/9,7
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68

Previous Work

* Inconsistent Heuristics
- B/B’ (Martelli 1977; Mero, 1984)
- Delay (Sturtevant et al, 2008)
* BPMX (Felner et al, 2011)

Iterative Budgeted Exponential Search
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Weighted A*

» Weighted A* uses a different f-cost:
*1(n) =g(n) + w - h(n)

* Inflate the heuristic by a factor of w
* Results in w-optimal solutions
- No re-expansions required

70
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Suboptimal Search

- Large body of algorithms build on Weighted A*
* Anytime Search
- Bounded-Cost Search
« Suboptimal Search

- Many approaches require node re-expansions to
prove bounds

- Many Focal List approaches
* Dynamic Potential Search

AAAIl 2020 Tutorial On Heuristic Search
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Re-expansions

* Re-expansions can have dire consequences
- Assume N unique nodes are expanded
- May require N2 expansions!

* General worst case example

Revisiting Suboptimal Search

Jingwei Chen, Nathan R. Sturtevant, William
Doyle, Wheeler Ruml

Symposium on Combinatorial Search, 2019

AAAIl 2020 Tutorial On Heuristic Search
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Demo(s)

http://www.movingai.com/SAS/WAB
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Avoiding Re-expansions

- General classes of priority functions that avoid re-
expansions can be developed

J(n) = ©(h(n), g(n))

1
Dyyph, 8) =—g +h
w

.- @ is an estimate of the optimal solution cost

AAAIl 2020 Tutorial On Heuristic Search
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Avoiding Re-expansions

- General classes of priority functions that avoid re-
expansions can be developed

J(n) = @(h(n), g(n))

1
Dyyush, g) =—g+h
w

1
Dyyplhe ) = 518 +h+1/(g + h7 + dw(w = Di?]

Conditions for Avoiding Node Re-expansions in Bounded
Suboptimal Search

Jingwei Chen, Nathan R. Sturtevant

[JCAI, 2019

AAAIl 2020 Tutorial On Heuristic Search
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g(n)

Slope 1-2w: aggressively suboptimal

8 10
Slope -1: optimal
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Avoiding Re-expansions

« Simpler function:

h>g:g+h
(DPWXDP — h<g (g+(2w 1)h)

w

AAAIl 2020 Tutorial On Heuristic Search
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Piecewise Linear XDP
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Demo(s)

http://www.movingai.com/SAS/SUB




Collapse and Restore
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Heuristic Overview

» Part | problem definition
* Implicit state space
* Only given heuristic function
- Part I
* Build new heuristics
* Heuristics from explicit state space in memory

AAAIl 2020 Tutorial On Heuristic Search

81




Exponential Heuristics
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Pattern Database

» Assume there is a fixed goal state
* Precompute distances to goal state
* (Culberson and Schaeffer, 1996)
- Pattern database
» Build an abstract state space
* BFS from the goal in the abstract space
» Abstract distances are heuristics to the goal

AAAIl 2020 Tutorial On Heuristic Search
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Domain Abstraction

- Take states and replace some values with blanks /
colors

*(0123456789)

*(0123456789)

(0*2*4%6*8 "
- Extreme example

SO R r )

* d( ) is this mapping function

84
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PDB Heuristic

- When we need the heuristic for a state s
« Compute (s)
» Lookup the distance from ¢(s) to the goal
* Return the distance as the heuristic value

AAAIl 2020 Tutorial On Heuristic Search
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PDBs: Use during search




Demo

http://www.movingai.com/SAS/PDB
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Demo Tasks

- What is better, a pattern database (PDB) or

man
- W
- W

88

nattan distance (MD)?
nere are PDBs weak?

nere is MD weak?

AAAIl 2020 Tutorial On Heuristic Search




ANI:vlgksn\r{ﬁ& | | |
aximum heuristic after

abstraction
b = b /k

O
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Polynomial Heuristic

* hd = rd/k [d = dimension of map]
T
vk

* BFS in abstract state space will not be effective

Ford=2 h:

* Need to store exact distances

AAAIl 2020 Tutorial On Heuristic Search
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Polynomial State Spaces

- Often explicit:

- Road networks

- Game maps

» Social network
- Can often afford O(n) memory with n nodes in graph
* Might be able to compute an oracle

AAAIl 2020 Tutorial On Heuristic Search
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N entries

Compressed Oracle

N entries > <«<—— [ entries (used) —>

<«<——— [ entries (used) —>

All-Pairs Shortest Path Differential Heuristic (DH)



Differential Heuristics /
Euclidean Embeddings
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Heuristic Approaches

- Different heuristics in polynomial/exponential domains
- Global Network Positioning (Ng & Zhang, 2001)
« ALT (Goldberg & Harrelson, 2005)

* True-Distance Heuristics; Differential Heuristic
(Sturtevant, et al, 2009)

- 1-Dimensional Euclidean Heuristic (Rayner, et al, 2011)
- Compressed DH (Goldenberg et al, 2011)

« Subset Selection of Search Heuristics (Rayner et al,
2013)

- FastMap (Cohen et al, 2018)

AAAIl 2020 Tutorial On Heuristic Search
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Distance Approximation

» Suppose undirected graph
» Suppose we know d(p1, x) for all x

« How can we use this to estimate the distance
between any states a & b?

- Triangle inequality:
d(a,p1) — d(b,p1)| < d(a,b)
* Key question:
* Where to place pi

98
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Selecting the next pivot

- Use greedy approach (Rayer et al, 2013)
« Choose several possible pivots

- Add the one that maximizes the information gain
(increase in heuristic value)

AAAIl 2020 Tutorial On Heuristic Search

100




Demo

http://www.movingai.com/SAS/DHP
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Demo Tasks

* For a given pivot:
- What path would be easy?
- What path would be hard?
» For a given path:
- What is a good pivot?
* What is a bad pivot?

AAAIl 2020 Tutorial On Heuristic Search
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FastMap



FastMap

= FastMap is an algorithm from data mining for automatically
generating embeddings of abstract objects into a high-dimensional
Euclidean space so that their Euclidean distance is very similar to a
given distance



FastMap

= Example: DNA strings (given distance: edit distance)
Embed into Euclidean space for visualization or clustering
Here: We use the L1 distances

DNA1 X
—)

2 3
>,l DNA1

« PNA3

DNA1 }DNAZ }DNAB DNAZ2

x= 0 1 3 (x,y)= (0,0) (0,2) (2,1)



FastMap




FastMap
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FastMap
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FastMap

= FastMap uses the L2 distances




FastMap

= FastMap uses the L2 distances
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FastMap

= FastMap uses the L2 distances

Oy
dai /" i O

Oy E— O "0
dab ’ —

2 2 2 N )

T = dal’—i_dab_d?b ---------- O]
2dab Og DTLGUJ(W )
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The h-values are not necessarily consistent.



FastMap

= Change FastMap to use the L1 distances

Op
Gaiy”t Lib AN o)
1 "SR L L
1 1 “‘: _______
Oa l Ob 4 OCL

Dnew(Oéa O}) = D(0;, Oj) — (m; — 56]')

= The h-values are consistent and thus also admissible.



FastMap
0.6 :
5 * Random Grid
= © random512-40-0
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FastMap

Number of Instances

1000

800

600

400

200

1

s FM 0 DH e OCT

2 3 4 5 6 7 8 9

Number of Dimensions

10

Number of Expansions

7000

6000

5000

4000

3000

2000

1000

s FM 0 DH e OCT

1

2 3 4 5 6 7 8 9 10

Number of Dimensions

FM - FastMap, DH - Differential heuristic [Sturtevant et al., 2009], OCT - Octile distance.

= Four dimensions are often sufficient.

= The preprocessing time is O(|E| + |V| log |V|) - often under one minute.



FastMap

The meeting location problem
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Demo

http://www.movingai.com/SAS/FMP
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Part |l
Preprocessing &
Constraints
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Overview

» Part | problem definition

* Implicit state space

* Only given heuristic function
- Part Il

* More than just heuristics
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Canonical Ordering
Jump Point Search



UNIVERSITY OF

T ALBERTA
How many duplicates?

- How many unique paths between two states in an

octile map?
* Assume a 2d x d rectangle with start/goal in the
corners
of Y (205) ~ (24)!
3 —
— d) — 2(d)
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Canonical Ordering of Paths

* Order all optimal paths:
- Path p1 is preferred over path p2 if
* p1 has diagonal actions prior to cardinal actions
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Basic Map




Simple Canonical Ordering




Canonical Ordering
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57 ALBERTA

Algorithms

« Canonical A* (Sturtevant & Rabin, 2016)
« Search using canonical ordering
« Jump Point Search (JPS) (Harabor & Grastien, 2011)

» Following canonical ordering to jump point, and
only point jump points on open list

- Bounded JPS (Sturtevant & Rabin, 2016)
» Following canonical ordering depth k
- Could use other policies
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Algorithms

 Canonical A* BJPS(0)
« Search using canonical ordering
« Jump Point Search (JPS) BJPS()

» Following canonical ordering to jump point, and
only point jump points on open list

* Bounded JPS BJPS(k)
» Following canonical ordering depth k
- Could use other policies
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Algorithms

- Canonical A* BJPS(0)
» Search using canonical ordering
- Jump Point Search (JPS) BJPS()

* Following canonical ordering to jump point, and
only point jJump points on open list

* Bounded JPS BJPS(k)

* Following canonical ordering depth k
- Canonical Dijkstra

» 4x faster single-source shortest path

AAAIl 2020 Tutorial On Heuristic Search
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Demo

http://www.movingai.com/SAS/JPS
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T ALBERTA
Demo Tasks

* Print grid map and ask students to:

- Draw canonical ordering

- Label jump points
» Does JPS put a state on OPEN that A* would not?
- How does JPS generate a node on different paths?
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Distance Constraints
(Reach, Bounding Boxes)
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Constraints

* Heuristic knowledge is contained in distance function

- Some information is not easily represented in
distances

- Given start, goal, current state, etc
- Should we generate a particular successor?
* Only if the constraints allow us to
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Reach

- Given a path P from sto tand a vertex von P, the
reach of v with respect to P is the minimum of the
length of the prefix of P (the subpath from s to v) and
the length of the suffix of P (the subpath from vto ).

* The reach of v, r(v), is the maximum, over all
shortest paths P through v, of the reach of v with
respect to P.

» (Goldberg, Kaplan & Werneck, 2005)
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57 ALBERTA

(Unidirected) Reach

- Each node has reach r
» For an optimal path to go through node n
- dist(start, n) <r
*or*
- dist(n, goal) =r

* (Goldberg, Kaplan & Werneck, 2005)
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High Reach

Low Reach



Demo

http://www.movingai.com/SAS/RCH
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Demo Tasks

» What states have high reach?
- What states have low reach?
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Bounding Boxes

* Assume you are at state n and and take action a
» What states can we reach on an optimal path?

* Instead of storing states, represent with bounding
box

- Geometric containers - Wagner et al (2005)
» Only tested with Dijkstra’s algorithm
- Bounding Boxes - Rabin and Sturtevant (2016)
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Demo

http://www.movingai.com/SAS/BBX
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Demo Tasks

* What is the bounding box for a particular state/
action?

* Why does the canonical ordering not improve result
for diagonal actions?

* In what sort of maps will bounding boxes be
ineffective?

AAAIl 2020 Tutorial On Heuristic Search

141




