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2. Collapse and Restore macros

[#1, SoCS-2015]




2.1 Collapse macro for best-first search

collap}

static value f(n)=5

stored value F(n)=8
[Korf 1993]
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Restore macro

restore |




* Collapse is a lossy compression
1) How do we know a node was collapsed?
2) How do we restore?

Restore is algorithm dependent

Z Z \
If F(n) > f(n) and the f-value is monotonically increasing
just perform a bounded DFS by F(N). [Korf 1993]




22 SMA* [#2:Russell 1992]
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SMA* [Russell 1992]
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SMA* [Russell 1992]
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restore

SMA™ uses a variant of
pathmax for its restore macro
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2.3. ILBFS [#1 socs-2015]

lterative linear best-first search

lterative variant of RBFS [Korf, AlJ 1993]
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Algorithm 1: High-level ILBEFS
Input: Root R

1 Insert i into OPEN and TREE

2 oldbest=NULL

3 while OPEN not empty do

4 best=extract_min(OPEN)

5 if goal(best) then

6 | exit

Collapse

C Restore

12 foreach child C' of best do

13 L Insert C' to OPEN and TREE

14 oldbest + best

« Uses the regular BFS expansion cycle

 Heavily uses the collapse and restore macros
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Classic BFS

Principal branch invariant
Store only the branch of the best node and its siblings
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Classic BFS

Principal branch invariant
Store only the branch of the best node and its siblings
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branch |LBFS

siblings

best

Classic BFS

Principal branch invariant
Store only the branch of the best node and its siblings
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ILBFS

branch
siblings

Collapse

Principal branch invariant
Store only the branch of the best node and its siblings
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ILBFS
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Principal branch invariant
* Initially valid for the root

» Two cases for the expansion cycle.
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ILBFS

Case 1:
Best is a child of oldbest
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ILBFS

Case 1:
Best is a child of oldbest
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Case 1:
Best is a child of oldbest
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Case 1:
Best is a child of oldbest
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Case 1:
Best is a child of oldbest
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ILBFS

Case 2:
Best is not a
child of oldbest
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ILBFS

best common

sibling

Case 2:
Best is not a
child of oldbest
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Case 2:

Best is not a
child of oldbest

collapse
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ILBFS

Case 2:
Best is not a
child of oldbest
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ILBFS

Case 2:

Best is a collapsed node

Restore
f=3, F=7
DFS(7)
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ILBFS

Case 2:
Best is a collapsed node

Restore
f=3, F=7
DFS(7)
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ILBFS

Case 2:
Best is a collapsed node
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ILBFS

branch

siblings Case 2:
Best is a collapsed node
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ILBFS

siblings Case 2:
Best is a collapsed node
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Restore in ILBFS

* Restore is the only non-trivial step of ILBFS
(and RBFS too)

* Observation: After collapse F(n) > f(n)

* Restore: DFS below n bounded by F(n)
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Linear-space best-first search

Iterative variant - ILBFS Recursive variant - RBFS
Algorithm 1: High-level ILBFS
8 : RBFS(n. B)
Input: Root R cr
1 Insert R into OPEN and TREE [.if n 1s a goal .
2 oldbest=NULL 2. solution < n; exit()
3 while OPEN not empty do -y e
4 best=extract_min(OPEN) 3 ( <_'_ ( '11')”'”([(”)
5 if goal(best) then 4. 1f C' 1s empty, return oo
6 | L exit 5. for each child n; in C'
7| ifoldbest # best.parent then 6. if f(n) < F(n)then F(n;) <— max(F(n), f(n;))
8 B « sibling of oldbest that is ancestor of best 7 l ) F( ) P f( )
9 collapse(B) ’ Clse L _’VI'Z-
10 if best. C=True then 8. (”1.' ng) < bestp(C')
i | best + restore(best) 9. while (F'(n1) < Band F(ny) < o)
12 | foreach child C of best do 10.  F(nq) < RBES(ny, min(B. F(nsy)))
13 | Insert C'to OPEN and TREE [1.  (nq.n9) < bestg(C)
14 | O[db(’St — b('St 12. l‘etl]l-l‘l F(”l)

ILBFS — an iterative variant of RBFS (korf 1993]
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RBFS/ILBFS

memory b M O(d)

collapse never lazily eagerly

continuum




