Search for Optimal Solutions: the Heart of Heuristic Search is Still Beating

Ariel Felner
ISE Department
Ben-Gurion University ISRAEL
felner@bgu.ac.il

2. Collapse and Restore macros

[\#1, SoCS-2015]

2.1 Collapse macro for best-first search

Restore macro

- Collapse is a lossy compression 1) How do we know a node was collapsed? 2) How do we restore?

Restore is algorithm dependent

If $F(n)>f(n)$ and the f-value is monotonically increasing just perform a bounded DFS by F(N). [Korf 1993]

2.2 SMA ${ }_{[\text {[\#2:Russell 1992] }}$

\section*{OPEN
 | 2 | 3 | 4 |
| :--- | :--- | :--- |}

SMA* [Russell 1992]

\section*{OPEN
 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- |}

SMA* [Russell 1992]

\section*{OPEN
 | 4 | 5 | 6 | 6 |
| :--- | :--- | :--- | :--- |}

\section*{OPEN
 | 5 | 6 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- |}

SMA* [Russell 1992]

OPEN
 5/6/6778

SMA* [Russell 1992]

\section*{OPEN | 5 | 6 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- |}

SMA* uses a variant of pathmax for its restore macro

2.3. ILBFS [\#1 Socs-2015]

Iterative linear best-first search

Iterative variant of RBFS [Korf, AIJ 1993]

Algorithm 1: High-level ILBFS
Input: Root R
1 Insert R into OPEN and TREE
2 oldbest=NULL
3 while OPEN not empty do
4 best=extract_min(OPEN)
5 if goal(best) then
$6 \quad$ exit

Collapse

Restore

```
12 foreach child \(C\) of best do
\(13 \quad\) Insert \(C\) to OPEN and TREE
oldbest \(\leftarrow\) best
```

- Uses the regular BFS expansion cycle
- Heavily uses the collapse and restore macros

ILBFS

Classic BFS

Principal branch invariant

Store only the branch of the best node and its siblings

ILBFS

Classic BFS

Principal branch invariant

Store only the branch of the best node and its siblings

Classic BFS

Principal branch invariant

Store only the branch of the best node and its siblings

Principal branch invariant

Store only the branch of the best node and its siblings

ILBFS

Collapse

Principal branch invariant

Store only the branch of the best node and its siblings

ILBFS

ILBFS

ILBFS

ILBFS

ILBFS

Principal branch invariant

- Initially valid for the root
- Two cases for the expansion cycle.

ILBFS

Case 1:

Best is a child of oldbest

ILBFS

ILBFS

Case 1:

Best is a child of oldbest

ILBFS

ILBFS

ILBFS

ILBFS

ILBFS

ILBFS

ILBFS

best

Case 2:

Best is not a child of oldbest

ILBFS

ILBFS

ILBFS

best

Case 2:

Best is not a child of oldbest

ILBFS

best

Case 2:
 Best is a collapsed node

Restore
$\mathrm{f}=3, \mathrm{~F}=7$
DFS(7)

ILBFS

ILBFS

Case 2:
 Best is a collapsed node

ILBFS

ILBFS

Restore in ILBFS

- Restore is the only non-trivial step of ILBFS (and RBFS too)
- Observation: After collapse $F(n)>f(n)$
- Restore: DFS below n bounded by $\mathrm{F}(\mathrm{n})$

Linear-space best-first search

Iterative variant - ILBFS

```
Algorithm 1: High-level ILBFS
Input: Root }
Insert R into OPEN and TREE
oldbest=NULL
while OPEN not empty do
        best=extract_min(OPEN)
        if goal(best) then
            exit
        if oldbest }\not=\mathrm{ best.parent then
            B\leftarrow\mathrm{ sibling of oldbest that is ancestor of best}
            collapse(B)
        if best.C=True then
            best }\leftarrow\mathrm{ restore(best)
        foreach child C of best do
            Insert C to OPEN and TREE
        oldbest }\leftarrow\mathrm{ best
```


Recursive variant - RBFS

$\operatorname{RBFS}(n, B)$

1. if n is a goal
2. solution $\leftarrow n$; exit()
3. $C \leftarrow \operatorname{expand}(n)$
4. if C is empty, return ∞
5. for each child n_{i} in C
6. if $f(n)<F(n)$ then $F\left(n_{i}\right) \leftarrow \max \left(F(n), f\left(n_{i}\right)\right)$
7. else $F\left(n_{i}\right) \leftarrow f\left(n_{i}\right)$
8. $\left(n_{1}, n_{2}\right) \leftarrow \operatorname{best}_{\mathrm{F}}(C)$
9. while $\left(F\left(n_{1}\right) \leq B\right.$ and $\left.F\left(n_{1}\right)<\infty\right)$
10. $F\left(n_{1}\right) \leftarrow \operatorname{RBFS}\left(n_{1}, \min \left(B, F\left(n_{2}\right)\right)\right)$
11. $\left(n_{1}, n_{2}\right) \leftarrow \operatorname{best}_{\mathrm{F}}(C)$
12. return $F\left(n_{1}\right)$

ILBFS - an iterative variant of RBFS [Korf 1993$]$

continuum

