Search for Optimal Solutions:
the Heart of Heuristic Search is Still Beating

Ariel Felner
ISE Department
Ben-Gurion University
ISRAEL

felner@bgu.ac.il

2. Collapse and Restore macros

[#1, SoCS-2015]

2.1 Collapse macro for best-first search

collap}

static value f(n)=5

stored value F(n)=8
[Korf 1993]

f-values

oPEN [9]9]8]é] 18] 6]

Restore macro

restore |

* Collapse is a lossy compression
1) How do we know a node was collapsed?
2) How do we restore?

Restore is algorithm dependent

Z Z \
If F(n) > f(n) and the f-value is monotonically increasing
just perform a bounded DFS by F(N). [Korf 1993]

22 SMA* [#2:Russell 1992]

(2)
OPEN

[2] 3] 4]

SMA* [Russell 1992]

SMA* [Russell 1992]

S MA* [Russell 1992]

OPEN
[5T6T6[718] :4:

collapse

SMA* [Russell 1992]

10

SMA* [Russell 1992]
(2)

OPEN
@ @ [5]6]6]7]8]
B)(6) O

restore

SMA™ uses a variant of
pathmax for its restore macro

11

2.3. ILBFS [#1 socs-2015]

lterative linear best-first search

lterative variant of RBFS [Korf, AlJ 1993]

12

Algorithm 1: High-level ILBEFS
Input: Root R

1 Insert i into OPEN and TREE

2 oldbest=NULL

3 while OPEN not empty do

4 best=extract_min(OPEN)

5 if goal(best) then

6 | exit

Collapse

C Restore

12 foreach child C' of best do

13 L Insert C' to OPEN and TREE

14 oldbest + best

« Uses the regular BFS expansion cycle

 Heavily uses the collapse and restore macros
13

Classic BFS

Principal branch invariant
Store only the branch of the best node and its siblings

Classic BFS

Principal branch invariant
Store only the branch of the best node and its siblings

branch |LBFS

©

@ @ @ best
8 DOE

Classic BFS

Principal branch invariant
Store only the branch of the best node and its siblings

16

branch |LBFS

siblings

best

Classic BFS

Principal branch invariant
Store only the branch of the best node and its siblings

17

ILBFS

branch
siblings

Collapse

Principal branch invariant
Store only the branch of the best node and its siblings

18

ILBFS

“I

feeeEEEnEn

ILBFS

19

Principal branch invariant
* Initially valid for the root

» Two cases for the expansion cycle.

22

ILBFS

Case 1:
Best is a child of oldbest

23

ILBFS

Case 1:
Best is a child of oldbest

24

Case 1:
Best is a child of oldbest

25

Case 1:
Best is a child of oldbest

26

Case 1:
Best is a child of oldbest

27

ILBFS

Case 2:
Best is not a
child of oldbest

28

ILBFS

best common

sibling

Case 2:
Best is not a
child of oldbest

29

Case 2:

Best is not a
child of oldbest

collapse

30

ILBFS

Case 2:
Best is not a
child of oldbest

31

ILBFS

Case 2:

Best is a collapsed node

Restore
f=3, F=7
DFS(7)

32

ILBFS

Case 2:
Best is a collapsed node

Restore
f=3, F=7
DFS(7)

33

ILBFS

Case 2:
Best is a collapsed node

34

ILBFS

branch

siblings Case 2:
Best is a collapsed node

35

ILBFS

siblings Case 2:
Best is a collapsed node

36

Restore in ILBFS

* Restore is the only non-trivial step of ILBFS
(and RBFS too)

* Observation: After collapse F(n) > f(n)

* Restore: DFS below n bounded by F(n)

37

Linear-space best-first search

Iterative variant - ILBFS Recursive variant - RBFS
Algorithm 1: High-level ILBFS
8 : RBFS(n. B)
Input: Root R cr
1 Insert R into OPEN and TREE [.if n 1s a goal .
2 oldbest=NULL 2. solution < n; exit()
3 while OPEN not empty do -y e
4 best=extract_min(OPEN) 3 (<_'_ ('11')”'”([(”)
5 if goal(best) then 4. 1f C' 1s empty, return oo
6 | L exit 5. for each child n; in C'
7| ifoldbest # best.parent then 6. if f(n) < F(n)then F(n;) <— max(F(n), f(n;))
8 B « sibling of oldbest that is ancestor of best 7 l) F() P f()
9 collapse(B) ’ Clse L _’VI'Z-
10 if best. C=True then 8. (”1.' ng) < bestp(C')
i | best + restore(best) 9. while (F'(n1) < Band F(ny) < o)
12 | foreach child C of best do 10. F(nq) < RBES(ny, min(B. F(nsy)))
13 | Insert C'to OPEN and TREE [1. (nq.n9) < bestg(C)
14 | O[db(’St — b('St 12. l‘etl]l-l‘l F(”l)

ILBFS — an iterative variant of RBFS (korf 1993]

38

RBFS/ILBFS

memory b M O(d)

collapse never lazily eagerly

continuum

