
1

dvances in Bidirectional SearchARecent

Ariel Felner
ISE Department

Ben-Gurion University
ISRAEL

felner@bgu.ac.il

Robert	C.	Holte
Univ.	of	Alberta

Canada

Ariel	Felner
Ben-Gurion	Univ.

Israel

Guni Sharon
Ben-Gurion	Univ.

Israel

Shahaf Shperberg
Ben-Gurion	Univ.

Israel

Nathan	Sturtevant
Univ.	of	Alberta

Canada

Eshed Shaham
HUJI			Israel

Jingwei Chen
Univ.	of	Alberta

Canada

domains)State spaces (

2

• A set of states

•Edges between states

• An initial and goal state

•A solution: a path from the initial
state to the goal state

Initial state

Goal state

3

Different Domain Types
Exponential Domains Polynomial Domains

Space size N) db(ON=
May have cycles

N=O(dk) –
May have many cycles

Input Implicitly given (large)
Have symmetries/structure

Explicitly given
May not have symmetries

Example Permutation puzzles
Planning problems

Path-finding in Maps, GPS
Sequence alignment

Typical #states 1015 106

Search time Days (30 minutes) /offline realtime /online
Algorithms DFS/BFS based algorithms

(IDA*/A*)
BFS based algorithms (A*)

4

first search schema-Best
• Keeps an OPEN list of nodes.
• Expands best node from OPEN.

– generate(x): insert x into OPEN.
– expand(x): delete x from OPEN and

generate its children.

• Expanded nodes go into a CLOSED
(hash table)

• BFS depends on its cost (heuristic)
function.

20

 30 25 35

 40 35

2025 30 3530 35 35 40Open

Closed 20 25

5

Cost functionsfirst search: -Best
• g(n): Best known distance from the initial state to n
• h(n): The estimated distance from n to the goal state.

• Examples:Air distance in maps
Manhattan Distance in the tile puzzle

Different cost combinations of g and h
• f(n)=level(n) Breadth-First Search.
• f(n)=g(n) Uniform Cost Search

(AKA Dijkstra’s algorithms).
• f(n)=h(n) Pure Heuristic Search (PHS).
• f(n)=g(n)+h(n) The A* algorithm (1968).

 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15

6

A*
• f(n) in A* is an estimation of the shortest path to the goal via n.

• h is admissible if it is underestimating.

• A* theorem: Given an admissible heuristic h, A* finds optimal
solutions, complete and optimally effective. [Pearl 84]

• Result: any other optimal search algorithm will expand at
least all the nodes expanded by A*

Breadth
First
Search A*

7

Unidirectional search

Different costs functions:
f(n)=g(n) Breadth-First Search. AKA Dijkstra’s algorithm.

f(n)=g(n)+h(n) The A* algorithm (1968).

g(n)
h(n)

start goal

n

Breadth
First
Search A*

Adding	heuristics	to	unidirectional	
search	is	very	beneficial

8

Breadth-first	search	(BFS)

start goal

9

Bidirectional	breadth-first	search	(BDS)

start goal

Unidirectional	breadth	
first		search	(𝑏")

Bidirectional	breadth	
first	search	(2𝑏"/%)Main	motivation	for	BDS:	

potential	exponential	reduction	
Improving	search
1) Add	heuristics
2) Run	bidirectional	searchLet’s	combine	both	direction:	

Bidirectional	Heuristic	Search

10

Two search frontiers: openF, openB

We select a node from either openF or openB

Once we have a match we stop with a solution

Bidirectional search algorithms

Challenge	1:	The	frontiers	should	meet

11

City of David

Meeting point

Meeting point

Siloam	Tunnel	
Jerusalem	-800

Transcontinental	
railroad			
USA	1869

Channel	Tunnel
Europe	1994 Meeting point

Many	Bi-HS algorithms	are	
guaranteed	to	meet!

Challenge	2:	guaranteeing	Optimality

12

start

goal

13

Many	Bi-HS	algorithms	guarantee	
optimality - no	open	node	below	U	

Challenge	2:	guaranteeing	Optimality

start

goal

14

1) Guarantee that the frontiers meet – they might cross each other.

2) Guarantee optimality (when applicable).

3) Which side to expand next

4) Which node within the chosen side

5) Stopping condition (when do we halt)

6) How do we add heuristics

Other challenges

15

• Each node has a heuristic towards the opposite end

end Heuristics-to-Front

start goalg(u)

h(u,goal)

g(v)
h(v,start)

u

v

Front-To-End bidirectional search:
f3(u)=g3(u)+h(u,goal))
f6(v)=g6(v)+h(start,v)

16

Front-To-Front bidirectional search:
f3(n)=g3(n)+ 𝑚𝑖𝑛:∈<=>?6(h(n,m)+g6(m))

Heuristics for BDS

g3(n)
h(n,m)

g6(m)
mn

start
goal

17

Front-to-front heuristic is more accurate but takes
more time to compute.

Front-to-front can be seen as a special case of
front-to-end:

f3(n)=g3(n)+ h3(n,goal)
																						h3(n,goal)=𝑚𝑖𝑛:∈<=>?6(h(n,m)+g6(m))

Heuristics

18

Alternate sides

Select node within the smallest OPEN

Select side/node with smallest f(n)

Select side/node with smallest g(n)

How to break ties?

node to expandWhich side/

19

3) Stopping condition (when do we halt?)

• Early stopping: U: the best known path Stop
when no node is smaller than U

• Late stopping: When a node in both sides is
chosen for expansion.

Stopping Condition

20

Bidirectional	A*Pohl1969

de	Champeaux1975

BS*	Kwa1989

Perimeter	searchDillenburg &	Nelson,	Manzini1994-96

Variants	of	bidirectional	searchKaindl &	Kainz1997

Single-frontier	bidirectional	searchFelner,	Sturtevant	and	Schaeffer2010

Dynamic	perimeter	 Wilt	&	Ruml2013

Theoretical	claimBarker	&	Korf2015

The	MM	algorithmHolte,	Felner,	Sharon	&	Sturtevant2016

on Bidirectional Searchyears50

No	real	success	&	
no	real	understanding

New	line	of	work	in	2015

MM:	The	first	Bidirectional	Heuristic	Search	
that	is	guaranteed	to	meet	in	the	middle

[Holte et	al.	AAAI-2016,	AIJ-2017]	(#1,#2)

Robert	C.	Holte
Univ.	of	Alberta

Canada

21

Ariel	Felner
Ben-Gurion	Univ.

Israel

Guni Sharon
Ben-Gurion	Univ.

Israel

Nathan	Sturtevant
Univ.	of	Denver

USA

Challenge	3:	Where	do	they	meet?

22

We	present	MM,	the	first bidirectional	heuristic	
search	algorithm	that	is	guaranteed	to	meet	

exactly		in	the	middle!

start goal

C*/2 C*/2

How	MM	works

Nodes	are	ordered	by	priority:

Expand	a	node	(on	either	sides)	with	minimal	 pr(n)

When	a	node	n	is	generated,	check	if	n	is	in	Open		of	the	opposite	side

Remember	the	cheapest	path	found	(cost	=	U).

MM	stops	when	U	≤	LB

LB=max(C;	fminF ;	fminB;	gminF +gminB +e)
24

g(n)+h(n)					(case	1)
2×g(n)											(case	2)pr(n)=max

pr(n)=g(n)+max{g(n),h(n)}

𝐂∗/2
nearfar

Main	lemma:	
MM	never	expands	nodes	with	 g(n)>C∗/2	

n
x

start goal

Proof:
• Let	g(n)>C*/2	

• case	1:		If	g(n)<h(n)	then	pr(n)=g(n)+h(n)	>	C*
• case	2:		If	g(n)>h(n)	then	pr(n)=			2g(n)					>	C*

• OPEN	always	includes	a	node	x on	the	optimal	
path	with	pr(x)≤C*

Result:	must	meet	in	the	middle

MM0 =	Brute-force	MM

MM0 =	MM	with	a	heuristic	h(n)=0	for	all	n.

26

g(n)+0=	g(n)
2×g(n)

pr(n)=max																																					≡	g(n)

start

Intermediate	Summary

A*

MM0

goal

BFS

MMMM

Region-Based	Analysis

FF NF FN RN

NN

start goal

FF	vs	RM

FF RN
start goal

• Only	unidirectional	search	(A*)	does	work	on	FF
• Only	MM/MM0	does	work	on	RN

If	FF>RN				
MM0 outperforms	BFS

Our	Conjectures
1. With	a	sufficiently	accurate	heuristic	A*	will	

expand	fewer	nodes	than	MM	and	MM0.

1. With	a	moderately	accurate	heuristic,	MM	can	
expand	fewer	nodes	than	A*	and	MM0 if	FF	>	RN

2. With	a	sufficiently	inaccurate	heuristic,	MM0 will	
expand	fewer	nodes	than	MM	and	A*	if	FF	>	RN.

30

Experiments: 10-Pancake Puzzle, C*=10

Better Heuristic Accuracy

Algorithm GAP-3 GAP-2 GAP-1 GAP

A* 97,644 27,162 4,280 117

MM 7,507 6,723 2,448 165

MM0 5,551 5,551 5,551 5,551

#states expanded

Fractional MM – fMM(P)
[Shaham, Felner, Chen and Sturtevant . SoCS-2017}[(#3)

32

𝐠𝐅(n)+𝐡𝐅(n)
𝐠𝐅(n)

pr(n)=max

𝐠𝐁(n)+𝐡𝐁(n)
𝐠𝐁(n)pr(n)=max

Forward	side:

Will	meet	at	
PC*,(1-P)C*

Backward	side:

start goal

PC*
(1-P)C*

0≤P≤1

/P

/(1−P)

Restrained Algorithm

33

A	Bi-HS	algorithm	A is	restrained if	there	exist	
0≤P≤1 such	that:	

A never	expands	forward	nodes	with				𝐠𝐅>		PC*	
A never	expands	backword nodes	with	𝐠𝐁>(1-P)C*

MM	and	fMM are	restrained

Will	meet	at	
PC*,(1-P)C* start goal

PC*
(1-P)C*

34

• “Given an admissible heuristic, A* expands (up to tie breaking)
the necessary and sufficient nodes to find an optimal solution
and to prove that this solution is indeed optimal.” [Dechter and
Pearl, 1985]

All nodes with f(u)=g(u)+h(u) < C* must be
expanded to prove a C* solution

Otherwise, there might be a shorter path from
n to the goal

The Optimality of A*

A*	is	optimally	efficient!

35

What about bidirectional search

What	are	the	set	of	states	
that	must	be	expanded	by	a	
bidirectional	search?

In	bidirectional	search	
we	have	to	talk	about	

a	pair	(u,v)
of	nodes

The	conditions	for	bidirectional	search	
[Eckerle,	Chen,	Sturtevant,	Zilles	and	Holte,	ICAPS-2017](#4)

Pair	of	nodes	(u,v)		are	a	must-expand	pair	(MEP)	if:

1)			𝐟𝑭(u)=𝐠𝑭(u)+𝐡𝑭(u)		<	C*

2)			𝐟𝑩(v)=𝐠𝑩(v)+𝐡𝑩(v)		<	C*

3)			𝐠𝑭(u)+𝐠𝑩(v)										<C*

• In	a	MEP		we	must	check	whether	there	is	a	shorter	path	from	
start to	goal via	u and	v

• In	a	MEP	either	u	or	v	must	be	expanded	to	verify	a	C*		solution

36

Must	Expand	Pairs

37

A B
𝐟𝑭(A)= 1+1 =2 <3
𝐟𝑩(B)= 1+1 =2 <3

𝒈𝑭(A)+𝒈𝑩(B)= 1+1 =2<3

Y1 B
𝐟𝑭(Y1)= 1+2 =3
𝐟𝑩(B) = 1+1 =2 < 3

𝒈𝑭(Y1)+𝒈𝑩(B)= 1+1 =2 <3

MEP No MEP

G_must-expand (GMX)
[Chen, Holte, Zilles, Sturtevant IJCAI-2017] (#5)

39

s

A
X
B
C
D

• A	bipartite	graph.	
• Includes	all	forward	nodes	with	f3<C*

Forward

G_must-expand (GMX)

40

s

A
X
B
C
D

• A	bipartite	graph.	
• Includes	all	forward	nodes	with	f3<C*
• Includes	all	backward	nodes	with	f6<C*		

Forward

A
D
C
B
g

Backward

G_must-expand (GMX) [Chen, Sturtervant, Holte, Zilles, IJCAI-2017]

41

s

A
X
B
C
D

• A	bipartite	graph.	
• Includes	all	forward	nodes	with	f3<C*
• Includes	all	backward	nodes	with	f6<C*		
• Edges	between	nodes	with	g3+g6<C*		

Forward

A
D
C
B
g

Backward

Edges	exist	between	must-expand	pairs

G_must-expand (GMX) [Chen, Sturtervant, Holte, Zilles, IJCAI-2017]

42

s

A
X
B
C
D

A
D
C
B
g

g=1

g=2

g=0

Forward

Backward• A	bipartite	graph.	
• Includes	all	forward	nodes	with	f3<C*
• Includes	all	backward	nodes	with	f6<C*		
• Edges	between	nodes	with	g3+g6<C*		
• Cluster	nodes	with	the	same	g-value

G_must-expand (GMX)
• GMX	as	clusters	of	nodes

Every	admissible	algorithm	
must	expand	a	VC	of	GMX

The	Minimum	Vertex	Cover	of	GMX	(MVC)	
is	a	lower	bound

6
Additional	nodes	can	be	expanded	
to	find	the	actual	solution

44

What does MVC of
GMX looks like?

Properties of MVC of GMX
[Shaham,	Felner Chen	and	and Sturtevant.	SoCS-2017][#3]

45

Contiguous	partition	=	VC

Properties of MVC [Shaham,	Felner and	Sturtevant.	SoCS-2017]

46

Contiguous	partition	=	VC

Properties of MVC [Shaham,	Felner and	Sturtevant.	SoCS-2017]

47

Contiguous	partition	=	VC

Properties of MVC [Shaham,	Felner and	Sturtevant.	SoCS-2017]

48

Contiguous	partition	=	VC

49

There	exist	𝐓𝑭+𝐓𝑩=C*	such	that:
All	nodes	with	𝒈𝑭<𝐓𝑭 ∈	MVC
All	nodes	with	𝒈𝑩<𝐓𝑩 ∈	MVC

MVC	of	GMX	is	Restrained

Theorem:
MVC	is	one	of	these	
contiguous	partitioning 𝐓𝑭=2

𝐓𝑩=1

Properties of MVC
[Shaham,	Felner,	Chen		and	Sturtevant.	SoCS-2017]

fMM and MVC

50

• fMM is	restrained
• MVC	is	restrained

Main	result:	There	exists	P*	such	that	
fMM(P*)		is	optimally	efficient

P = 𝟐
𝟑

start goal

PC*
(1-P)C*fMM(P*)	is	equivalent	to	A*

GMX for the pancake puzzle

51

• C*=13	
start

goal goal

start

Properties	of	MVC	[Shaham et	al.	2018]

52

• Contiguous	partitiongs
• There	exist	𝐓𝑭+𝐓𝑩=C*	such	that

• All	nodes	with	𝒈𝑭<𝐓𝑭 are	in	MVC
• All	nodes	with	𝒈𝑩<𝐓𝑩 are	in	MVC

776,458𝐓𝑭=5 𝐓𝑩=8

Problem

53

Challenge:	reason	about	GMX	on	the	fly	
and	try	to	expand	a	VC		fast
The	NBS	algorithm	[Chen	et	al.	2017]	and	
The	DVCBS	algorithm	[Shperberg et	al.	2019]	

try	to	expand	a	VC		fast

GMX	and	C*	are	not known	in	advance	à
P*	cannot	be	known	in	advance	either

Parametric Algorithms

54

FMM and GBFSH
Two	parametric	algorithms	which	may	expand	exactly	an	
MVC	of	GMX	

1. fMM(p) [SoCs-2017] (fractional	MM)	meets	at		[pC*,(1-p)C*]

2.	GBFSH	[Barley	et	al.,	SoCS2018] ,	requires	a	split	function	and	
expand	nodes	according	to	the	split	function. 55

start goal

PC*
(1-P)C*

P = 𝟐
𝟑

The	optimal	parameters	(p*)	are	instance	
dependent	and	are	not	known	in	advance

Algorithm: GBFSH
[Barley et al. SoCS-2018] [#6]

• Define	𝒇𝒍𝒊𝒎 initialized	to	h(start,goal)
• 𝒇𝒍𝒊𝒎 is	incremented	by	1	in	each	iteration.

In	each	iteration:
• We	split			𝒇𝒍𝒊𝒎=𝒈𝑭𝒍𝒊𝒎 + 𝒈𝑩𝒍𝒊𝒎 (+e)	according	to	an	external	split	

function

• In	the	forward	side	we	expand	all	nodes	n	such	that	
𝒈𝑭(n)<𝒈𝑭𝒍𝒊𝒎 and			𝒇𝑭(n)≤𝒇𝒍𝒊𝒎

• In	the	Backward	side	we	expand	all	nodes	that	
𝒈𝑭(n)<𝒈𝑭𝒍𝒊𝒎 and			𝒇𝑭(n)≤𝒇𝒍𝒊𝒎

• In	each	iteration	one	of		𝒈𝑭TUV	or	𝒈𝑩TUV is	increased.	 56

57

• 𝒇𝒍𝒊𝒎=2
𝒈𝑭𝒍𝒊𝒎 = 𝟏			𝒈𝑩𝒍𝒊𝒎=1

• 𝒇𝒍𝒊𝒎=3
𝒈𝑭𝒍𝒊𝒎 = 𝟐			𝒈𝑩𝒍𝒊𝒎=1

• 𝒇𝒍𝒊𝒎=4
𝒈𝑭𝒍𝒊𝒎 = 𝟐			𝒈𝑩𝒍𝒊𝒎=2

• What are good split functions?
• How do we mimic MM?

GBFSH
• When 𝒇𝒍𝒊𝒎 and 𝒈𝑭𝒍𝒊𝒎 are both increased

but 𝒈𝑩𝒍𝒊𝒎 remains the same
• In the forward side we:

• 1) expand all old nodes (g<previous 𝒈𝑭𝒍𝒊𝒎) with f=𝒇𝒍𝒊𝒎
• 2) expand new nodes with previous 𝒈𝑭𝒍𝒊𝒎 but with

f≤𝒇𝒍𝒊𝒎

• In the backward side we expand
• expand all old nodes (g<previous 𝒈𝑩𝒍𝒊𝒎) with f=𝒇𝒍𝒊𝒎

58

Conjecture:
GBFSH	and	FMM	are	identical

Non-Parametric
GMX-based
Algorithms

59

The	NBS	algorithm	[Chen	et	al.	2017]	and	
The	DVCBS	algorithm	[Shperberg et	al.	2019]	

try	to	expand	a	VC		fast

60

Pair	of	nodes	(u,v)		is	a	must-expand	pair	(MEP)	
if:

𝐟𝑭(u)=𝐠𝑭(u)+𝐡𝑭(u)	<	C*
𝐟𝑩(v)=𝐠𝑩(v)+𝐡𝑩(v)<	C*
𝐠𝑭(u)+𝐠𝑩(v)	<C*

The	NBS	Algorithm	[Chen, Holte, Zilles, Sturtevant, IJCAI-2017]

Near-optimal	Bidirectional	Search

61

𝐟𝑭(u)=𝐠𝑭(u)+𝐡𝑭(u)
𝐟𝑩(v)=𝐠𝑩(v)+𝐡𝑩(v)
𝐠𝑭(u)+𝐠𝑩(v)

The	NBS	Algorithm	[Chen, Holte, Zilles, Sturtevant, IJCAI-2017]

Near-optimal	Bidirectional	Search

62

For	each	pair	of	nodes	(u,v)	we	define:																				
.	

𝐟𝑭(u)=𝐠𝑭(u)+𝐡𝑭(u)
lb(u,v)=	MAX				𝐟𝑩(v)=𝐠𝑩(v)+𝐡𝑩(v)

	𝐠𝑭(u)+𝐠𝑩(v)

• Find	the	pair	(u,v)	in	open	with	minimal	lb(u,v)
• Expand	them	both.

The	NBS	Algorithm	[Chen, Holte, Zilles, Sturtevant, IJCAI-2017]

Near-optimal	Bidirectional	Search

63

NBS

s g
lb=1

A
X
Yi

C
B
D

lb=2

lb=2

B
C
D

A

lb=3

X X
X XX XXX
X X

X

X

NBS:	Main	properties

64

1)	NBS	finds	an	optimal	solution

2)	NBS	is	at	most	twice	than	OPTIMAL

3)	No	other	algorithm	can	have	a	
better	worst-case	bound

4)	NBS	is	robust

Why?		Taking	both		vertices	of	
disjoint	edges	is	a	VC	≤	2	MVC

s g
lb=1

A
X
Yi

C
B
D

lb=2

lb=2

B
C
D

A

lb=3

X X
X X

XX

3) New Algorithm:
Dynamic Vertex-cover Bidirectional Search (DVCBS)
[Shperberg ,	Felner,	Shimony and	Sturtevant.	AAAI	2019][#7]

• NBS	expanded	both	nodes	

• DVCBS	maintains	dynamic	GMX		(DGMX)	that	uses	the	currently	
known	information	from	Open	nodes

• Repeatedly	find	MVC	of	DGMX	and	expand	it	

65

Many	variants	exist

Execution of DVCBS

67

s gX

lb=1

DGMX

X

Execution of DVCBS

68

g

A,X

Yi

2

lb=2

DGMX

X XX

Execution of DVCBS

69

A,X

Yi

B, C
D

6

X X

lb=2

DGMX

X
X

X

No upper bound for DVCBS

70

• Optimal	path	s,x,	g.		Cost	2K-1.
• MVC	is	{X,Y,g}.	NBS	expans 6	nodes.
• DVCBS	never	expands	Y.	

• Generates	(X,Y).	This	is	a	cluster	of	2	nodes.	
• It	expands	all	the	Vi	nodes.	K+1	nodes.	Unbounded.

MVC

DVCBS

Experiments

71

All Algorithms: Nodes Expanded

73

First
solution

Ratio
VC/MVC

VC

20-Pancake Puzzle
322,3782.65322,299A*

Gap-2
209,7231.71208,648NBSF

152,046 1.24151,616NBSA

141,669 1.16141,111 DVSBSF

122,5871.00122,054DVCBSA

4-peg Towers of Hanoi
3,268,0934.753,239,287A*

234,1651.91234,165NBSF6+6
232,2681.89232,268 NBSA

707,6791.03704,213DVCBSF

691,1591.01690,389DVCBSA

DVCBSA is the winner in all aspects, many time is exactly MVC

Summary

75

• Non-parametric GMX-based algorithms

• NBS - worst case guarantee (2x)

• DVCBS - no guarantee but better
average-case performance

76

Case	2

Assuming		Consistent	Heuristic

Assumptions [Dechter & Pearl 85]

77

Problem Instances

Traditionally, the analysis assumed that:
1) The algorithm can only assume admissibility
2) The actual instances are from 		𝐈𝑪𝑶𝑵

The	algorithms	cannot	exploit	the	
fact	that	they	are	running	on	

consistent	heuristics

78

What happens if
the algorithms have
more knowledge on

the instances?

[Shaham,	Felner,	Sturtevant	ans Rosenchein.	SoCS-2017]	[#8]

Case 1: Knowing Epsilon

79

• Sometimes we have a lower bound ε on the edge
costs

Pair	of	nodes	(u,v)		are	a	must-expand	pair	(MEP)	
if:
1)			𝐟𝑭(u)=𝐠𝑭(u)+𝐡𝑭(u)	<	C*
2)			𝐟𝑩(v)=𝐠𝑩(v)+𝐡𝑩(v)<	C*
3)			𝐠𝑭(u)+𝐠𝑩(v)	 <C*+ε

𝐓𝑭=1

𝐓𝑩=1

𝐓𝑭=2 𝐓𝑩=1

GMX vs GMXe

No knowledge on ε

Assuming ε=1

Fractional MM – fMM(P)

81

𝐠𝐅(n)+𝐡𝐅(n)
𝐠𝐅(n)/P

pr(n)=max

𝐠𝐁(n)+𝐡𝐁(n)
𝐠𝐁(n)/(1-P)pr(n)=max

Forward	side:

Will	meet	at	
PC*,(1-P)C*

Backward	side:

start goal

PC*
(1-P)C*

0≤P≤1

+ε

+ε

Case 2: Assuming consistency

82

|𝐡𝐅(u)-𝐡𝐅(v)|	
|𝐡𝐁(u)−𝐡𝐁(v)|

𝒉𝑪(u,v)=max

a b
𝐡𝐅(a)=10 𝐡𝐅(b)=5

h(a,b)=5

start goalu v
𝒉𝑪(u,v)

We can construct a front-to-front heuristic 𝒉𝑪

Case 2: assuming consistency

83

Pair	of	nodes	(u,v)		are	a	must-expand	pair	(MEP)	
if:
1)			𝐟𝑭(u)=𝐠𝑭(u)+𝐡𝑭(u)	<	C*
2)			𝐟𝑩(v)=𝐠𝑩(v)+𝐡𝑩(v)<	C*
3)			𝐠𝑭(u)+𝐠𝑩(v)																				<C*+𝒉𝑪(u,v)

84

What does MVC of
GMX look like now?

It	is	not	restrained
We	have	a	counter	

example

Case 2: assuming consistency

85

• In GMX for each nodes we have two new
dimensions:
• (1) 𝐡𝑭-value
• (2) 𝐡6-value

• In this case there isn’t any one threshold T for
MVC but a matrix of thresholds T, based on the
𝐡𝑭- and 𝐡6-values

𝐡𝑭=1 𝐡𝑭=2 𝐡𝑭=3
𝐡6=1 4 5 4
𝐡6=2 3 4 5
𝐡6=3 2 3 4

86

|𝐓(𝒙𝟏, 𝒚𝟏) − 𝐓(𝒙𝟐, 𝒚𝟐)| ≤
max{|𝒙𝟏 − 𝒙𝟐|, |𝒚𝟏 − 𝒚𝟐|}	

Very	similar	to	a	1-Lipschitz	
requirement	in	math

There	exists	a	2-dimentional	function	T(𝐡𝑭,𝐡6)	
that	provides	these	thresholds

𝐡𝑭=1 𝐡𝑭=2 𝐡𝑭=3
𝐡6=1 4 5 4
𝐡6=2 3 4 5
𝐡6=3 2 3 4

Summary

87

• fMM is	restrained

• MVC	of	GMX	is	restrained

• fMM(P*)	is	optimally	efficient

• fMM(P(𝐡𝑭(n),𝐡𝑩(n))	is	optimally	efficient	if	the	
algorithm	can	exploit	the	fact	that	the	heuristic	is	
consistent

Bound propagations
Shperberg, Felner, Shimony and Stortevant, SoCS-2019] [#9]

88

𝐟𝑭(u)=𝐠𝑭(u)+𝐡𝑭(u)
lb(u,v)=	MAX				𝐟𝑩(v)=𝐠𝑩(v)+𝐡𝑩(v)

	𝐠𝑭(u)+𝐠𝑩(v)

lb(u)=		min v’	{lb(u,v’)}

f-values	are	changed	to	their	lb-values

89

Δ(u)=	𝐠𝑭(u)-𝐡𝑩(𝐮, 𝐬𝐭𝐚𝐫𝐭)

consistencyNew algorithm assuming
AIJ)(JaconsonSewel and DIBBS:

)2020-AAAIBarley and Riddle (Alcazar, BEA*: [

g3(u) u
start

h6(u, start)

g6(v)
v

goal
hj(v, goal)

Δ(v)=	𝐠𝐁(v)-𝐡𝑭(𝐯, 𝐠𝐨𝐚𝐥)

b(u)=	𝒇𝑭(u)+Δ(u)

b(u)=	𝒈𝑭(u) + 𝒉𝑭 𝐔 + 𝐠𝑭(u)−𝐡𝑩(𝐮)

b(u)=	𝟐𝒈𝑭(u) + 𝒉𝑭 𝐔 −𝐡𝑩(𝐮)

b(v)=	𝒇𝑩(v)+Δ(v)

b(v)=	𝟐𝒈𝑩(v) + 𝒉𝑩 𝐯 −𝐡𝑭(𝒗)

b(x)=	𝟐𝒈𝑭(𝒙) + 𝒉𝑭 𝒙 −𝐡𝑩(x)
b(x)=	𝟐𝒈𝑩(x) + 𝒉𝑩 𝒙 −𝐡𝑭(x)

b(x)+b(x)=	𝟐𝒈𝑭(𝒙) + 	𝟐𝒈𝑩(x)

(b(x)+b(x))/2=	𝒈𝑭(𝒙) + 	𝒈𝑩(x)

Case 2: assuming consistency

90

Pair	of	nodes	(u,v)		are	a	must-expand	pair	(MEP)	
if:
1)	𝐠𝑭(u)+𝐡𝑭(u)+ Δ(v) <	C*
2)	𝐠𝑩(v)+𝐡𝑩(v)+ Δ(u) <	C*
3)			𝐠𝑭(u)+𝐠𝑩(v)+	𝒉𝑪(u,v)	<C*

|𝐡𝐅(u)-𝐡𝐅(v)|	
|𝐡𝐁(u)−𝐡𝐁(v)|

𝒉𝑪(u,v)=max

Case 2: assuming consistency

91

Pair	of	nodes	(u,v)		are	a	must-expand	pair	(MEP)	if:
1)	𝐠𝑭(u)+𝐡𝑭(u)+ 	𝐠𝐁(v)-𝐡𝑭(𝐯) <	C*

															𝐠𝑭(u)+𝐠𝐁(v)+𝐡𝑭(u)-𝐡𝑭(𝐯) <	C*

2)	𝐠𝑩(v)+𝐡𝑩(v)+ 	𝐠𝑭(u)-𝐡𝑩(𝐮)<	C*
𝐠𝐁(v)+	𝐠𝐅(u)+𝐡𝐁(v)-𝐡𝐁(𝐮)<	C*

3)	 𝐠𝑭(u)+𝐠𝑩(v)+	𝒉𝑪(u,v)	<C*

