Recent Advances in Bidirectional Search

Ariel Felner
ISE Department
Ben-Gurion University
| ISRAEL

Jingwei Chén i
Uniiv. of Alberta felner@bgu.ac.il o/t A
Canada HUJI Israel

Robert C. Holte _ .
Shahaf Shperberg jiv of Alberta Ariel Felner Guni Sharon

Ben-Gurion Univ. Ganag Ben-Gurion Univ. Ben-Gurion Univ. Univ. of Alberta
Israel Israel Israel Canada

Nathan Sturtevant

State spaces (domains)

* A set of states

Initial state

*Edges between states

* An initial and goal state

Goal state

*A solution: a path from the initial
state to the goal state

Different Domain Types

Exponential Domains

Polynomial Domains

Space size N

N=0O(b9)
May have cycles

N=O(d¥) —
May have many cycles

Planning problems

Input Implicitly given (large) Explicitly given
Have symmetries/structure May not have Symmetries
Example Permutation puzzles Path-finding in Maps, GPS

Sequence alignment

Typical #states

1015

10°

Search time

Days (30 minutes) /offline

realtime /online

Algorithms

DFS/BFS based algorithms
(IDA*/A¥)

BFS based algorithms (A*)

~

(c)

Best-first search schema

Keeps an OPEN list of nodes.
Expands best node from OPEN.

— generate(x): insert x into OPEN.

— expand(x): delete x from OPEN and
generate its children.

Expanded nodes go into a CLOSED
(hash table)

BFS depends on its cost (heuristic) Closed -

function.
Open |30/35/35/40.

Best-first search: Cost functions

* g(n): Best known distance from the initial state to n
* h(n): The estimated distance from n to the goal state.

+ Examples:Air distance in maps y 15 26 37
Manhattan Distance in the tile puzzile 319 Mol11
121131415

Different cost combinations of g and h
+ f(n)=level(n) Breadth-First Search.
* f(n)=g(n) Uniform Cost Search
(AKA Dijkstra’s algorithms).
* f(n)=h(n) Pure Heuristic Search (PHS).
* f(n)=g(n)+h(n) The A* algorithm (1968).

A

f(n) in A* is an estimation of the shortest path to the goal via n.
h is admissible if it is underestimating.

A* theorem: Given an admissible heuristic h, A* finds optimal
solutions, complete and optimally effective. [Pearl 84]

Result: any other optimal search algorithm will expand at
least all the nodes expanded by A*

Breadt
First

A*
Search

Unidirectional search

N ,l‘x\

~L_ hin)

g(n S
~]

start ® goal
Different costs functions:

Adding heuristics to unidirectional
search is very beneficial

Breadt
First

A*
Search

Breadth-first search (BFS)

Unidirectional breadth
first search (b%)

s@ goal

Bidirectional breadth-first search (BDS)

Main motivation for BDS:
potential exponential reduction

L\ TNV]

Improving search
1) Add heu pesieas

2) Runbidif Let’s combine both direction:

Bidirectional Heuristic Search

Bidirectional search algorithms

Two search frontiers: openF, openB

We select a node from either openF or openB

Once we have a match we stop with a solution

10

Challenge 1: The frontiers should meet

Siloam Tunnel

Many Bi-HS algorithms are
guaranteed to meet!

Europe 1994 T

Meeting point

FFFFFF

Il

Challenge 2: guaranteeing Optimality

12

Challenge 2: guaranteeing Optimality

R

Many Bi-HS algorithms guarantee
optimality - no open node below U

13

Other challenges

1) Guarantee that the frontiers meet — they might cross each other.
2) Guarantee optimality (when applicable).

3) Which side to expand next

4) Which node within the chosen side

9) Stopping condition (when do we halt)

6) How do we add heuristics

14

Front-to-end Heuristics

Each node has a heuristic towards the opposite end

Front-To-End bidirectional search:

tr(u)=gr(u)+h(u,goal))
fp(v)=gg(v)+h(start,v)

15

Heuristics for BDS

Front-To-Front bidirectional search:

fF (n)=gF (n)+ minmEopenB (h(n) m)+gB (m))

16

Heuristics

Front-to-front heuristic is more accurate but takes
more time to compute.

Front-to-front can be seen as a special case of
front-to-end:
fr(n)=gr(n)*+ hp(n,goal)
hF(nagoaI):'ninmEopenB (h(n,m)+gB (m))

157

Which side/node to expand

Alternate sides

Select node within the smallest OPEN
Select side/node with smallest f(n)
Select side/node with smallest g(n)

How to break ties?

18

Stopping Condition

3) Stopping condition (when do we halt?)

« Early stopping: U: the best known path Stop
when no node Is smaller than U

« Late stopping: When a node in both sides is
chosen for expansion.

19

50 years on Bidirectional Search

1969 Pohl Bidirectional A*
1 1970 de Champeaux

No real success &
no real understandmg

BAZ ™ AL Bt L Oym C pPc
2015 Barker & Korf Theoretical claim
p, |

New line of work in 2015

20

MM: The first Bidirectional Heuristic Search
that is guaranteed to meet in the middle

[Holte et al. AAAI-2016, AlJ-2017] (#1,#2)

K. ! y
Robert C. Holte

Univ. of Alberta Ariel Felner Guni Sharon Nathan Sturtevant
Canada Ben-Gurion Univ. Ben-Gurion Univ. Univ. of Denver
Israel Israel USA

24l

Challenge 3: Where do they meet?

We present MM, the first bidirectional heuristic
search algorithm that is guaranteed to meet

exactly in the middle!

P2

How MM works

Nodes are ordered by priority:

g(n)+h(n) (case 1)

pr(n)=max 2%g(n) (case 2)

pr(n)=g(n)+max{g(n),h(n)}

Expand a node (on either sides) with minimal pr(n)
When a node n is generated, check if nis in Open of the opposite side
Remember the cheapest path found (cost = U).

MM stops when U < LB

LB=max(C; fminF ; fminB; gminF +gminB +e)

24

Main lemma:
MM never expands nodes with g(n)>C*/2

Proof: Result: must meet in the middle

e Let g(n)>C*/2
e case 1: If g(n)<h(n) then pr(
e case 2: If g(n)>h(n) then pr(

g(n)+h(n) > C*
2g(n) >C*

e OPEN always includes a @pde x on the optimal

path with pr(x)<C*

MMobo = Brute-force MM

MM, = MM with a heuristic h(n)=0 for all n.

pr(n)=max {gz(:;::)z g(n) :|— = g(n)

26

Intermediate Summary

BFS

e

Region-Based Analysis

 Only unidirectional search (A*) does work on FF
 Only MM/MMO does work on RN

FF vs RM

FF RN

start 803 |

If FF>RN
MMo outperforms BFS

>

Our Conjectures

. With a sufficiently accurate heuristic A* will
expand fewer nodes than MM and MM,,.

. With a moderately accurate heuristic, MM can
expand fewer nodes than A* and MM, if FF > RN

. With a sufficiently inaccurate heuristic, MM, will
expand fewer nodes than MM and A* if FF > RN.

30

Experiments: 10-Pancake Puzzle, C*=10

H#states expanded

Fractional MM — fMM(P)

[Shaham, Felner, Chen and Sturtevant . SoCS-2017}[(#3)

0<P<1
Forward side:

Backward side:

Will meet at
PC*,(1-P)C*

_ gr(n)+hg(n)
p"‘“"’“a’“l: ge(n) /P

) gg(n)+hg(n)
Prin)=maxg . (n)/(1-P)

Restrained Algorithm

A Bi-HS algorithm A is restrained if there exist
0<P<1 such that:

A never expands forward nodes with gg> PC*

A never expands backword nodes with gg>(1-P)C*

MM and fMM are restrained

Will meet at
PC*,(1-P)C*

33

The Optimality of A*

» "Given an admissible heuristic, A* expands (up to tie breaking)
the necessary and sufficient nodes to find an optimal solution

and to prove that this solution is indeed optimal.” [Dechter and
Pearl, 1985]

All nodes with f(u)=g(u)+h(u) < C* must be
expanded to prove a C* solution

A:l:

‘.
goal

A* is optimally efficient!

Otherwise, there might be a shorter path from
n to the goal

34

What about bidirectional search

What are the set of states A
that must be expanded by a
bidirectional search?

In bidirectional search

we have to talk about
a pair (u,v) .

of nodes

35

The conditions for bidirectional search

[Eckerle, Chen, Sturtevant, Zilles and Holte, ICAPS-2017](#4)

Pair of nodes (u,v) are a must-expand pair (MEP) if:

1) fp(u)=gp(u)+hp(u) <C*

2) fg(v)=gp(v)+hpg(v) <C*

goal

3) gr(u)+ggp(v) <C*

* InaMEP we must check whether there is a shorter path from
start to goal viauand v

* Ina MEP either U or v must be expanded to verify a C* solution

36

fo(A)= 1+1=2<3
fe(B)= 1+1=2 <3
gr(A)tgp(B)= 1+1 =2<3

fo(Y1)= 142 =3
f5(B) = 141 =2 <3
gr(Y1)+gp(B)= 1+1 =2 <3

237

G_must-expand (GMX)
[Chen, Holte, Zilles, Sturtevant IJCAI-2017] (#5)

A bipartite graph.
* Includes all forward nodes with fz<C*

Forward

G_must-expand (GMX)

A bipartite graph.
Includes all forward nodes with fz<C*

Forward

Includes all backward nodes with fz<C*

3 CR OGO

Backward

RIFIIO,

40

G musT-expand (GMX) [Chen, Sturtervant, Holte, Zilles, IJCAI-2017]

A bipartite graph.

* Includes all forward nodes with fz<C*

* Includes all backward nodes with f5<C*
* Edges between nodes with gr+gp<C*

Forward Backward

‘ Edges exist between must-expand pairs

he=2 @ B=1
%
(X

SRo#

41

G musT-expand (GMX) [Chen, Sturtervant, Holte, Zilles, IJCAI-2017]

* A bipartite graph. Backward
* Includes all forward nodes with fz<C*

» Includes all backward nodes with fp<C* Forward
* Edges between nodes with gp+g5<C*
* Cluster nodes with the same g-value g—

NN
N

N\

42

G_must-expand (GMX)

e GMX as clusters of nodes

What does MVC of

= GMX looks like?
Ve 23

44

Properties of MVC of GMX

[Shaham, Felner Chen and and Sturtevant. SoCS-2017][#3]

Contiguous partition = VC

45

Pr‘Opef""ieS Of MVC [Shaham, Felner and Sturtevant. SoCS-2017]

Contiguous partition = VC

46

Pr‘Opef""ieS Of MVC [Shaham, Felner and Sturtevant. SoCS-2017]

Contiguous partition = VC

47

Pr‘Opef""ieS Of MVC [Shaham, Felner and Sturtevant. SoCS-2017]

Contiguous partition = VC

48

Properties of MVC

[Shaham, Felner, Chen and Sturtevant. SoCS-2017]

Theorem:
MVC is one of these
contiguous partitioniné TIF=

There exist Tp+Tg=C* such that:
All nodes with gp<Tr € MVC
All nodes with gg<Tg € MVC

MVC of GMX is Restrained

49

fMM and MVC

fMM(P*) is equivalent to A*

i el oS

Main result: There exists P* such that
fMM(P*) is optimally efficient

50

GMX for the pancake puzzle

C*=13

start m)

19

268,465
165,269
45,422
5,539
342

19

1 ¢ qOQl

[7=]
-n
[1=]
o)

start ey 1 819,651

8

19 819,559
342 818,598 980
6,155 812,680 @ 6,260

78,497 790,315 1

g 8

367,637 776,458

g

3
g

iy

) 937,708 206,387
400,861 1,244,105 1 B) 268,465
1,479,697 165,269
1,608,283 (4 45,422
1,657,171 1 @) 5.539
2,284 1,669,879 342

259 1,672,144 19

1,672,4

| ¢ qjOQ|

ol

Properties of MVC [Shaham et al. 2018]

Contiguous partitiongs
There exist Tp+Tp=C* such that
* Allnodes with gg<Tf are in MVC

* All nodes with gg<Tg are in MVC

TF=

574,862 (6) 937,703“&““@
400,861 G}H 1,244,105

174,008 (8 1,479,69?&{@ 165,269

13,050 (10) 1,657,17?““@ 5,539
2.284 @H 1,669,879 342
259 @H 1,672,145“‘“‘@ 19
1,672, Z‘Oﬁzm*o
L tl 1

52

Problem

GMX and C* are not known in advance =
P* cannot be known in advance either

Challenge: reason about GIVIX on the fIy
and try to expand a VC fast

The NBS algorithm [Chen et al. 2017] and
The DVCBS algorithm [Shperberg et al. 2019]
try to expand a VC fast

53

Parametric Algorithms

FMM and GBFSH

Two parametric algorithms which may expand exactly an
MVC of GMX

1. fMM(p) [socs-2017] (fractional MM) meets at [pC*,(1-p)C*]

The optlmal parameters (p*) are instance
dependent and are not known in advance

2. GBFSH [Barley et al., Socs2018] , requires a split function and

expand nodes according to the split function. &

Algorithm: GBFSH

[Barley et al. SoCS-2018] [#6]

Define f;;,, initialized to h(start,goal)
f1im is incremented by 1 in each iteration.

In each iteration:

» Wesplit fiim=9riim + 9p1im (+€) according to an external split
function

In the forward side we expand all nodes n such that
gr(nN)<griim and fr(n)<fiim

In the Backward side we expand all nodes that
gr(N)<Griim and fr(n)<fiim

In each iteration one of ggjim OF 9p1im 1S iNCreased. ”

flim:2

grim =1 gpim=1
flim:3

griim = 2 9piim=1
flim:4

griim = 2 9Blim=2

What are good split functions?
How do we mimic MM?

57

GBFSH

 When f;,,, and gri;m, are both increased
but gg;i,m remains the same

 In the forward side we:

1) expand all old nodes (g<previous griim) With f=fim

2) expand new nodes with previous g, but with
fﬁflim

Conjecture:
1GBFSH and FMM are identical

7ttt

58

Non-Parametric
GMX-based
Algorithms

The NBS algorithm [chen etal. 2017] and
The DVCBS algorithm [Shperberg et al. 2019]
try to expand a VC fast

59

The NBS Algorithm [Chen, Holte, Zilles, Sturtevant, IJCAI-2017]
Near-optimal Bidirectional Search

Pair of nodes (u,v) is a must-expand pair (MEP)
if:

fr(u)=gp(u)+hp(u) < C*
fp(v)=ggp(v)+hp(v)< C*
gr(u)+gp(v) <C*

60

The NBS Algorithm [Chen, Holte, Zilles, Sturtevant, IJCAI-2017]
Near-optimal Bidirectional Search

fr(u)=gr(u)+hg(u)
fp(v)=gp(v)+hg(v)
gr(u)+gp(v)

61

The NBS Algorithm [Chen, Holte, Zilles, Sturtevant, IJCAI-2017]
Near-optimal Bidirectional Search

For each pair of nodes (u,v) we define:

fr(u)=gr(u)+hp(u)
Ib(u,v)= MAX= fp(v)=gp(v)+hp(v)

gr(u)+gp(v)

* Find the pair (u,v) in open with minimal Ib(u,v)
 Expand them both.

62

S8

L L L L
< < c L

NBS: Main properties

1) NBS finds an optimal solution

2) NBS is at most twice than OPTIMAL

Why? Taking both vertices of
disjoint edges isa VC <2 MVC

3) No other algorithm can have a
better worst-case bound

4) NBS is robust

3) New Algorithm:

Dynamic Vertex-cover Bidirectional Search (DVCBS)

[Shperberg , Felner, Shimony and Sturtevant. AAAI 2019][#7]

NBS expanded both nodes

DVCBS maintains dynamic GMX (DGMX) that uses the currently
known information from Open nodes

Repeatedly find MVC of DGMX and expand it

Many variants exist

65

Execution of DVCBS

he=2 @1 le

DGMX

(a) Problem =2 ®11>®.1.@<11—©-1 @ @

Instance hg=2 @1 he=1 he=1 1 hg=1 1 hp=1
hF=1® C*=3 ®B=1

Ib=1

67

Execution of DVCBS
DGMX

@ B:]-
(a) Problem @ m
Instance 2 == 1 = 1 =
he= 1® @13:1

lb=2

68

Execution of DVCBS
DGMX

)

Qe

(a) Problem @m
Instance } _, == 1 .
C 3 ®1|3=1

lb=2

he=1

69

No upper bound for DVCBS

Optimal path s,x, g. Cost 2K-1.

MVC is {X,Y,g}. NBS expans 6 nodes.

DVCBS never expands Y.

 Generates (X,Y). This is a cluster of 2 nodes.

It expands all the Vi nodes. K+1 nodes. Unbounded.

70

Experiments

Ul

All Algorithms: Nodes Expanded

- vC Ratio First
ve/Mve | solution

20-Pancake Puzzle
A* 322,299 2.65| 322,378
NBSF 208,648 1.71| 209,723
Gap-2 NBSA 151,616 1.24| 152,046
DVSBSF 141,111 1.16 | 141,669
DVCBSA 122,054 1.00| 122,587

4-peg Towers of Hanoi
A* | 3,239,287 4.75 | 3,268,093
6+6 NBSF | 234,165 1.91| 234,165
NBSA | 232,268 1.89| 232,268
DVCBSF | 704,213 1.03| 707,679
DVCBSA | 690,389 1.01| 691,159

DVCBSA is the winner in all aspects, many time is exactly MVC

73

Summary

* Non-parametric GMX-based algorithms
 NBS - worst case guarantee (2x)

« DVCBS - no guarantee but better
average-case performance

75

Case 2

Assuming Consistent Heuristic

76

Assump'ﬁOnS [Dechter & Pear| 85]
Problem Instances

Traditionally, the analysis assumed that:
1) The algorithm can only assume admissibility
2) The actual instances are from Icoy

The algorithms cannot exploit the
fact that they are running on
consistent heuristics

77

[Shaham, Felner, Sturtevant ans Rosenchein. SoCS-2017] [#8]

What happens if

the algorithms have

more knowledge OQ
the instances?

Yy

e

78

Case 1: Knowing Epsilon

Sometimes we have a lower bound € on the edge
costs

Pair of nodes (u,v) are a must-expand pair (MEP)
if:

1) fp(u)=gp(u)+hp(u) < C*
2) fp(v)=gp(v)+hg(v)< C*
3) gr(u)+gp(v)+E€<C*

79

GMX VS GMXe
@

@>@ @<@>‘
o

No knowledge on € 6485 < 3

Assuming e=1

grtgpte <3

Fractional MM — fMM(P)

0<P<1
. B gF(n)+hF(n)
Forward side: pr(")'max{gF(n)/P+€

o - h
Backward side: pr(n)=max—|:§E::;;(1]f|(ar)|.)|.g

Will meet at
PC*,(1-P)C*

Case 2: Assuming consistenc

hg(a)=10 hg(b)=5

@ h(a,b)=5 @

We can construct a front-to-front heuristic h,

ety 0

| hg(u)-hg(v)]
| hg(u)-hg(v)|

h(u,v)=max

Case 2: assuming consistency

Pair of nodes (u,v) are a must-expand pair (MEP)
if:

1) fp(u)=gp(u)+hp(u) < C*
2) fp(v)=gp(v)+hpg(v)< C*
3) gr(u)+gp(v) +h(u,v)<C*

83

What does MVC of
« GMX look like "OW%

It is not restrained
We have a counter
example

84

Case 2: assuming consistency

« InGMX for each nodes we have two new
dimensions:
(1) hp-value
(2) hi-value

* In this case there isn't any one threshold T for
MVC but a matrix of thresholds T, based on the
hy- and hz-values

85

There exists a 2-dimentional function T(hy,hg)
that provides these thresholds

| T(x1,y1) — T(X2,¥2)| <
max{|x; — x2|, |y1 — y21}

Very similar to a 1-Lipschitz
requirement in math

86

Summary

fMM is restrained
MVC of GMX is restrained
fMM(P*) is optimally efficient

fMM(P(hp(n),hg(n)) is optimally efficient if the
algorithm can exploit the fact that the heuristic is
consistent

87

Bound propagations

Shperberg, Felner, Shimony and Stortevant, SoCS-2019] [#9]

fr(u)=gp(u)+hp(u)
Ib(u,v)= MAX—fg(v)=gp(v)+hp(v)

§F(u)+gB(V)

Ib(u)= min Vv’ {lb(u,v’)}

f-values are changed to their Ib-values

88

New algorithm assuming consistency

DIBBS: Sewel and Jaconson (AlJ)
BEA*: [Alcazar, Barley and Riddle (AAAI-2020)

A(u)= gr(u)-hp(u, start) A(v)=gg(Vv)-hg(v, goal)
b(x)=2gr(x) + hp(x)=hp(x)
b(x)=2gg(x) + hg(x)=hp(x)

start

b(x)+b(x)=2gr(x) + 2gp5(X)
b(u)= fr(u)+A)
b(u)=gr(u) + (b(X)+b(X))I2_ gF(x) T gB(X))=hg(v)

b(u)=2gF(u) +-rrr AR,

89

Case 2: assuming consistency

Pair of nodes (u,v) are a must-expand pair (MEP)
if:
1) gr(u)+hp(u)+ A(v) < C*
2) gB(V)+hB(V)+ A(U) <OEc”

3) grl(u)+gp(v)+ h¢(uv)<C*

| hg(u)-hg(v)]

frcluv)=max—< - (u)-hg(v)]

90

Case 2: assuming consistency

Pair of nodes (u,v) are a must-expand pair (MEP) if:

1) gr(u)thp(u)+ gg(v)-hp(v) < C*
gr(u)+gg(v)+hg(u)-he(v) < C*

2) gp(v)+hg(v)+ gp(u)-hp(u)< C*
gg(V)+ gr(w)+hg(v)-hg(u)< C*

3) gr(u)+gp(v)+ h¢(uv) <C*

91

