Recent Advances in Bidirectional Search

Jingwei Chen Univ. of Alberta Canada

Ariel Felner ISE Department Ben-Gurion University ISRAEL felner@bgu.ac.il

Eshed Shaham HUJI Israel

Shahaf Shperberg Ben-Gurion Univ. Israel

Robert C. Holte Univ. of Alberta Canada

Ariel Felner Ben-Gurion Univ. Israel

Guni Sharon Ben-Gurion Univ. Israel

Nathan Sturtevant Univ. of Alberta Canada

State spaces (domains)

A set of states

- Edges between states
- An initial and goal state
- A solution: a path from the initial state to the goal state

Different Domain Types

	Exponential Domains	Polynomial Domains	
Space size N N=O(bd)		N=O(d ^k) -	
	May have cycles	May have many cycles	
Input	Implicitly given (large)	Explicitly given	
	Have symmetries/structure	May not have symmetries	
Example	Permutation puzzles	Path-finding in Maps, GPS	
	Planning problems	Sequence alignment	
Typical #states	10 ¹⁵	10 ⁶	
Search time	Days (30 minutes) /offline	realtime /online	
Algorithms	DFS/BFS based algorithms (IDA*/A*)	BFS based algorithms (A*)	

Best-first search schema

Keeps an OPEN list of nodes.

- generate(x): insert x into OPEN.
- expand(x): delete x from OPEN and generate its children.

Best-first search: Cost functions

- g(n): Best known distance from the initial state to n
- h(n): The estimated distance from n to the goal state.
- Examples: Air distance in maps
 Manhattan Distance in the tile puzzle

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Different cost combinations of g and h

- f(n)=level(n) Breadth-First Search.
- f(n)=g(n) Uniform Cost Search
 (AKA Dijkstra's algorithms).
- f(n)=h(n) Pure Heuristic Search (PHS).
- f(n)=g(n)+h(n) The A* algorithm (1968).

- f(n) in A* is an estimation of the shortest path to the goal via n.
- h is admissible if it is underestimating.
- A* theorem: Given an admissible heuristic h, A* finds optimal solutions, complete and optimally effective. [Pearl 84]
- Result: any other optimal search algorithm will expand at least all the nodes expanded by A*

Unidirectional search

Different costs functions:

Adding heuristics to unidirectional search is very beneficial

Breadth-first search (BFS)

Unidirectional breadth first search (b^d) goal

Bidirectional breadth-first search (BDS)

Main motivation for BDS: potential exponential reduction

Improving search

- Add heur

Run bidir Let's combine both direction: Bidirectional Heuristic Search

Bidirectional search algorithms

Two search frontiers: openF, openB

We select a node from either openF or openB

Once we have a match we stop with a solution

Challenge 1: The frontiers should meet

Siloam Tunnel

Many Bi-HS algorithms are guaranteed to meet!

Europe 1994

Challenge 2: guaranteeing Optimality

Challenge 2: guaranteeing Optimality

Many Bi-HS algorithms guarantee optimality - no open node below U

Other challenges

- 1) Guarantee that the frontiers meet they might cross each other.
- 2) Guarantee optimality (when applicable).
- 3) Which side to expand next
- 4) Which node within the chosen side
- 5) Stopping condition (when do we halt)
- 6) How do we add heuristics

Front-to-end Heuristics

Each node has a heuristic towards the opposite end

Front-To-End bidirectional search:

$$f_F(u)=g_F(u)+h(u,goal))$$

$$f_B(v) = g_B(v) + h(start,v)$$

Heuristics for BDS

Front-To-Front bidirectional search:

$$f_F(n)=g_F(n)+min_{m\in openB}(h(n,m)+g_B(m))$$

Heuristics

Front-to-front heuristic is more accurate but takes more time to compute.

Front-to-front can be seen as a special case of front-to-end:

$$f_F(n)=g_F(n)+h_F(n,goal)$$

 $h_F(n,goal)=min_{m \in openB}(h(n,m)+g_B(m))$

Which side/node to expand

Alternate sides

Select node within the smallest OPEN

Select side/node with smallest f(n)

Select side/node with smallest g(n)

How to break ties?

Stopping Condition

- 3) Stopping condition (when do we halt?)
- <u>Early stopping</u>: U: the best known path Stop when no node is smaller than U
- Late stopping: When a node in both sides is chosen for expansion.

50 years on Bidirectional Search

1969	Pohl	Bidirectional A*
1975	de Champeaux	

No real success & no real understanding

2015 Will & Kullil Dynamic perimeter

2015 Barker & Korf Theoretical claim

New line of work in 2015

brch

MM: The first Bidirectional Heuristic Search that is guaranteed to meet in the middle

[Holte et al. AAAI-2016, AIJ-2017] (#1,#2)

Robert C. Holte Univ. of Alberta Canada

Ariel Felner
Ben-Gurion Univ.
Israel

Guni Sharon Ben-Gurion Univ. Israel

Nathan Sturtevant
Univ. of Denver
USA

Challenge 3: Where do they meet?

We present MM, the <u>first</u> bidirectional heuristic search algorithm that is guaranteed to meet exactly in the middle!

How MM works

Nodes are ordered by **priority**:

$$pr(n)=max = \begin{cases} g(n)+h(n) & (case 1) \\ 2\times g(n) & (case 2) \end{cases}$$

$$pr(n)=g(n)+max\{g(n),h(n)\}$$

Expand a node (on either sides) with minimal pr(n)

When a node n is generated, check if n is in Open of the opposite side

Remember the cheapest path found (cost = U).

MM stops when U ≤ LB

Main lemma:

MM never expands nodes with $g(n)>C^*/2$

Proof:

Result: must meet in the middle

- Let g(n)>C*/2
 - case 1: If g(n)<h(n) then pr(r
 - case 2: If g(n)>h(n) then pr(r
- OPEN always includes a path with pr(x)≤C*

g(n)+h(n) > C*

2g(n) > C*

de x on the optimal

MMo = Brute-force MM

 $MM_0 = MM$ with a heuristic h(n)=0 for all n.

$$pr(n)=max = \begin{cases} g(n)+0=g(n) \\ 2\times g(n) \end{cases} = g(n)$$

Intermediate Summary

Region-Based Analysis

- Only unidirectional search (A*) does work on FF
- Only MM/MM0 does work on RN

Our Conjectures

1. With a sufficiently accurate heuristic A* will expand fewer nodes than MM and MM₀.

1. With a moderately accurate heuristic, MM can expand fewer nodes than A^* and MM_0 if FF > RN

2. With a sufficiently inaccurate heuristic, MM_0 will expand fewer nodes than MM and A* if FF > RN.

Experiments: 10-Pancake Puzzle, C*=10

	Better Heuristic Accuracy ————			
Algorithm	GAP-3	GAP-2	GAP-I	GAP
A *	97,644	27,162	4,280	117
MM	7,507	6,723	2,448	165
MM ₀	5,551	5,551	5,551	5,551

#states expanded

Fractional MM – fMM(P)

[Shaham, Felner, Chen and Sturtevant . SoCS-2017][(#3)

0≤P≤1 Forward side:

$$pr(n)=max - \begin{cases} g_F(n)+h_F(n) \\ g_F(n)/P \end{cases}$$

Backward side:

$$pr(n)=max-\begin{cases}g_B(n)+h_B(n)\\g_B(n)/(1-P)\end{cases}$$

Will meet at PC*,(1-P)C*

Restrained Algorithm

A Bi-HS algorithm A is *restrained* if there exist 0≤P≤1 such that:

A never expands forward nodes with $g_F > PC^*$ A never expands backword nodes with $g_B > (1-P)C^*$

MM and fMM are restrained

Will meet at PC*,(1-P)C*

The Optimality of A*

"Given an admissible heuristic, A* expands (up to tie breaking)
the necessary and sufficient nodes to find an optimal solution
and to prove that this solution is indeed optimal." [Dechter and
Pearl, 1985]

All nodes with $f(u)=g(u)+h(u) < C^*$ must be expanded to prove a C^* solution

A* is optimally efficient!

Otherwise, there might be a shorter path from n to the goal

What about bidirectional search

What are the set of states that must be expanded by a bidirectional search?

In bidirectional search we have to talk about a pair (u,v) of nodes

The conditions for bidirectional search

[Eckerle, Chen, Sturtevant, Zilles and Holte, ICAPS-2017](#4)

Pair of nodes (u,v) are a must-expand pair (MEP) if:

1)
$$f_F(u)=g_F(u)+h_F(u) < C^*$$

2)
$$f_B(v)=g_B(v)+h_B(v) < C^*$$

3)
$$g_F(u)+g_B(v)$$
 < C*

- In a MEP we must check whether there is a shorter path from start to goal via u and v
- In a MEP either u or v must be expanded to verify a C* solution

Must Expand Pairs

MEP

$$f_F(A) = 1+1=2 < 3$$

 $f_B(B) = 1+1=2 < 3$
 $g_F(A) + g_B(B) = 1+1=2 < 3$

No MEP

G_must-expand (GMX)

[Chen, Holte, Zilles, Sturtevant IJCAI-2017] (#5)

- A bipartite graph.
- Includes all forward nodes with $f_F < C^*$

G_must-expand (GMX)

- A bipartite graph.
- Includes all forward nodes with $f_F < C^*$
- Includes all backward nodes with f_B<C*

G_must-expand (GMX) [Chen, Sturtervant, Holte, Zilles, IJCAI-2017]

- A bipartite graph.
- Includes all forward nodes with $f_F < C^*$
- Includes all backward nodes with f_B<C*
- Edges between nodes with $g_F + g_B < C^*$

Edges exist between must-expand pairs

G_must-expand (GMX) [Chen, Sturtervant, Holte, Zilles, IJCAI-2017]

A bipartite graph.

Backward

- Includes all forward nodes with $f_F < C^*$
- Includes all backward nodes with f_B<C*
- Edges between nodes with $g_F + g_B < C^*$
- Cluster nodes with the same g-value

G_must-expand (GMX)

GMX as clusters of nodes

Every admissible algorithm must expand a VC of GMX

$$f_F < 3, f_B < 3,$$

 $g_F + g_B < 3$

The Minimum Vertex Cover of GMX (MVC) is a lower bound

Properties of MVC of GMX

[Shaham, Felner Chen and and Sturtevant. SoCS-2017][#3]

Properties of MVC

[Shaham, Felner and Sturtevant. SoCS-2017]

Properties of MVC [Shaham, Felner and Sturtevant. SoCS-2017]

Properties of MVC [Shaham, Felner and Sturtevant. SoCS-2017]

Properties of MVC

[Shaham, Felner, Chen and Sturtevant. SoCS-2017]

Theorem:

MVC is one of these contiguous partitioning $T_F=2$

There exist $T_F + T_B = C^*$ such that:

All nodes with $g_F < T_F \in MVC$

All nodes with $g_B < T_B \in MVC$

MVC of GMX is Restrained

fMM and MVC

fMM is rostrained

fMM(P*) is equivalent to A*

Main result: There exists P* such that fMM(P*) is optimally efficient

GMX for the pancake puzzle

• C*=13

Properties of MVC [Shaham et al. 2018]

- Contiguous partitiongs
- There exist $T_F + T_B = C^*$ such that
 - All nodes with $g_F < T_F$ are in MVC
 - All nodes with $g_B < T_B$ are in MVC

Problem

GMX and C* are **not** known in advance) P* cannot be known in advance either

Challenge: reason about GMX on the fly and try to expand a VC fast

The NBS algorithm [Chen et al. 2017] and The DVCBS algorithm [Shperberg et al. 2019] try to expand a VC fast

Parametric Algorithms

FMM and GBFSH

Two parametric algorithms which may expand exactly an MVC of GMX

1. fMM(p) [SoCs-2017] (fractional MM) meets at [pC*,(1-p)C*]

The optimal parameters (p*) are instance dependent and are not known in advance

2. GBFSH [Barley et al., Socs2018], requires a split function and expand nodes according to the split function.

Algorithm: GBFSH

[Barley et al. SoCS-2018] [#6]

- Define f_{lim} initialized to h(start,goal)
- f_{lim} is incremented by 1 in each iteration.

In each iteration:

• We split $f_{lim} = g_{Flim} + g_{Blim}$ (+e) according to an external split function

In the forward side we expand all nodes n such that

$$g_F(n) < g_{Flim}$$
 and $f_F(n) \le f_{lim}$

In the Backward side we expand all nodes that

$$g_F(n) < g_{Flim}$$
 and $f_F(n) \le f_{lim}$

• In each iteration one of g_{Flim} or g_{Rlim} is increased.

•
$$f_{lim}=2$$

$$g_{Flim}=1 \quad g_{Blim}=1$$

•
$$f_{lim}$$
=3
 $g_{Flim} = 2$ $g_{Blim}=1$

•
$$f_{lim}$$
=4
$$g_{Flim} = 2 \quad g_{Blim} = 2$$

- · What are good split functions?
- · How do we mimic MM?

GBFSH

- When f_{lim} and g_{Flim} are both increased but g_{Blim} remains the same
- In the forward side we:
 - 1) expand all old nodes (g g_{Flim}) with $f = f_{lim}$
 - 2) expand new nodes with previous g_{Flim} but with $f \le f_{lim}$

Conjecture: GBFSH and FMM are identical

Non-Parametric GMX-based Algorithms

The NBS algorithm [Chen et al. 2017] and The DVCBS algorithm [Shperberg et al. 2019] try to expand a VC fast

The NBS Algorithm [Chen, Holte, Zilles, Sturtevant, IJCAI-2017] Near-optimal Bidirectional Search

Pair of nodes (u,v) is a must-expand pair (MEP) if:

$$f_F(u)=g_F(u)+h_F(u) < C^*$$

 $f_B(v)=g_B(v)+h_B(v) < C^*$
 $g_F(u)+g_B(v) < C^*$

The NBS Algorithm [Chen, Holte, Zilles, Sturtevant, IJCAI-2017] Near-optimal Bidirectional Search

$$f_F(u)=g_F(u)+h_F(u)$$

$$f_B(v)=g_B(v)+h_B(v)$$

$$g_F(u)+g_B(v)$$

The NBS Algorithm [Chen, Holte, Zilles, Sturtevant, IJCAI-2017] Near-optimal Bidirectional Search

For each pair of nodes (u,v) we define:

$$f_F(u)=g_F(u)+h_F(u)$$

$$f_B(v)=g_B(v)+h_B(v)$$

$$g_F(u)+g_B(v)$$

- Find the pair (u,v) in open with minimal lb(u,v)
- Expand them both.

NBS

NBS: Main properties

- 1) NBS finds an optimal solution
- 2) NBS is at most twice than OPTIMAL

Why? Taking both vertices of disjoint edges is a VC ≤ 2 MVC

3) No other algorithm can have a better worst-case bound

3) New Algorithm:

Dynamic Vertex-cover Bidirectional Search (DVCBS)

[Shperberg, Felner, Shimony and Sturtevant. AAAI 2019][#7]

- NBS expanded both nodes
- DVCBS maintains dynamic GMX (DGMX) that uses the currently known information from Open nodes
- Repeatedly find MVC of DGMX and expand it

Many variants exist

Execution of DVCBS

DGMX

lb=1

Execution of DVCBS

DGMX

Execution of DVCBS

DGMX

No upper bound for DVCBS

- Optimal path s,x, g. Cost 2K-1.
- MVC is {X,Y,g}. NBS expans 6 nodes.
- DVCBS never expands Y.
 - Generates (X,Y). This is a cluster of 2 nodes.
- It expands all the Vi nodes. K+1 nodes. Unbounded.

Experiments

All Algorithms: Nodes Expanded

		VC	Ratio vc/mvc	First solution		
20-Pancake Puzzle						
	A*	322,299	2.65	322,378		
Gap-2	NBSF	208,648	1.71	209,723		
	NBSA	151,616	1.24	152,046		
	DVSBSF	141,111	1.16	141,669		
	DVCBSA	122,054	1.00	122,587		
4-peg Towers of Hanoi						
	A*	3,239,287	4.75	3,268,093		
6+6	NBSF	234,165	1.91	234,165		
	NBSA	232,268	1.89	232,268		
	DVCBSF	704,213	1.03	707,679		
	DVCBSA	690,389	1.01	691,159		

DVCBSA is the winner in all aspects, many time is exactly MVC

Summary

- Non-parametric GMX-based algorithms
 - NBS worst case guarantee (2x)
 - DVCBS no guarantee but better average-case performance

Case 2

Assuming Consistent Heuristic

Assumptions [Dechter & Pearl 85] Problem Instances

Traditionally, the analysis assumed that:

- 1) The algorithm can only assume admissibility
- 2) The actual instances are from I_{CON}

The algorithms cannot exploit the fact that they are running on consistent heuristics

Case 1: Knowing Epsilon

• Sometimes we have a lower bound ϵ on the edge costs

- 1) $f_F(u)=g_F(u)+h_F(u) < C^*$
- 2) $f_B(v)=g_B(v)+h_B(v)< C^*$
- 3) $g_F(u)+g_B(v)+\varepsilon < C^*$

GMX vs GMXe

No knowledge on ε

Assuming $\varepsilon=1$

Fractional MM - fMM(P)

0≤P≤1 Forward side:

$$pr(n)=max = \begin{cases} g_F(n)+h_F(n) \\ g_F(n)/P+\epsilon \end{cases}$$

Backward side:

$$pr(n)=max - \begin{cases} g_B(n)+h_B(n) \\ g_B(n)/(1-P)+\epsilon \end{cases}$$

Will meet at PC*,(1-P)C*

We can construct a front-to-front heuristic h_C

$$h_C(\mathsf{u},\mathsf{v}) = \max - \begin{cases} |h_F(\mathsf{u}) - h_F(\mathsf{v})| \\ |h_B(\mathsf{u}) - h_B(\mathsf{v})| \end{cases}$$

- 1) $f_F(u)=g_F(u)+h_F(u) < C^*$
- 2) $f_B(v)=g_B(v)+h_B(v)< C^*$
- 3) $g_F(u)+g_B(v)+h_C(u,v)<C^*$

It is not restrained
We have a counter
example

- In GMX for each nodes we have two new dimensions:
 - (1) h_F -value
 - (2) h_B -value
- In this case there isn't any one threshold T for MVC but a matrix of thresholds T, based on the h_F and h_B -values

	$h_F = 1$	h _F =2	h _F =3
h_B =1	4	5	4
h _B =2	3	4	5
h_B =3	2	3	4

	$h_F = 1$	h _F =2	h _F =3
h_B =1	4	5	4
h_B =2	3	4	5
h_B =3	2	3	4

There exists a 2-dimentional function $T(h_F, h_B)$ that provides these thresholds

$$|T(x_1, y_1) - T(x_2, y_2)| \le \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

Very similar to a 1-Lipschitz requirement in math

Summary

fMM is restrained

MVC of GMX is restrained

- fMM(P*) is optimally efficient
- $fMM(P(\mathbf{h}_F(n), \mathbf{h}_B(n)))$ is optimally efficient if the algorithm can exploit the fact that the heuristic is consistent

Bound propagations

Shperberg, Felner, Shimony and Stortevant, SoCS-2019] [#9]

$$f_F(u)=g_F(u)+h_F(u)$$

$$f_B(v)=g_B(v)+h_B(v)$$

$$g_F(u)+g_B(v)$$

$$lb(u) = min v' \{lb(u,v')\}$$

f-values are changed to their lb-values

New algorithm assuming consistency

DIBBS: Sewel and Jaconson (AIJ)
BEA*: [Alcazar, Barley and Riddle (AAAI-2020)

$$\Delta(\mathbf{u}) = \mathbf{g}_{F}(\mathbf{u}) - \mathbf{h}_{B}(\mathbf{u}, \mathbf{start})$$

$$\Delta(\mathbf{v}) = \mathbf{g}_{B}(\mathbf{v}) - \mathbf{h}_{F}(\mathbf{v}, \mathbf{goal})$$

$$b(\mathbf{x}) = 2g_{F}(\mathbf{x}) + h_{F}(\mathbf{x}) - \mathbf{h}_{B}(\mathbf{x})$$

$$b(\mathbf{x}) = 2g_{B}(\mathbf{x}) + h_{B}(\mathbf{x}) - \mathbf{h}_{F}(\mathbf{x})$$

$$b(\mathbf{u}) = f_{F}(\mathbf{u}) + \Delta$$

$$b(\mathbf{u}) = g_{F}(\mathbf{u}) + \Delta$$

1)
$$g_F(u) + h_F(u) + \Delta(v) < C^*$$

2)
$$g_B(v)+h_B(v)+\Delta(u) < C^*$$

3)
$$g_F(u)+g_B(v)+h_C(u,v)$$

$$h_C(u,v)=\max - \begin{cases} |h_F(u)-h_F(v)| \\ |h_B(u)-h_B(v)| \end{cases}$$

1)
$$g_F(u)+h_F(u)+g_B(v)-h_F(v) < C^*$$
 $g_F(u)+g_B(v)+h_F(u)-h_F(v) < C^*$
2) $g_B(v)+h_B(v)+g_F(u)-h_B(u) < C^*$
 $g_B(v)+g_F(u)+h_B(v)-h_B(u) < C^*$
3) $g_F(u)+g_B(v)+h_C(u,v) < C^*$