Recent Advances in Bidirectional Search

Jingwei Chen Univ. of Alberta Canada

Shahaf Shperberg Ben-Gurion Univ. Israel

Ariel Felner
 ISE Department Ben-Gurion University ISRAEL felner@bgu.ac.il

Eshed Shaham
HUJI Israel

Nathan Sturtevant Univ. of Alberta Canada

State spaces (domains)

- A set of states
-Edges between states
- An initial and goal state
-A solution: a path from the initial state to the goal state

Different Domain Types

	Exponential Domains	Polynomial Domains
Space size \mathbf{N}	$\mathrm{N}=\mathrm{O}\left(\mathbf{b}^{\mathbf{d}}\right)$ May have cycles	$\mathrm{N}=\mathrm{O}\left(\mathbf{d}^{\mathrm{k}}\right)-$ May have many cycles
Input	Implicitly given (large) Have symmetries/structure	Explicitly given May not have symmetries
Example	Permutation puzzles Planning problems	Path-finding in Maps, GPS Sequence alignment
Typical \#states	10^{15}	10^{6}
Search time	Days (30 minutes) /offline	realtime /online
Algorithms	DFS/BFS based algorithms $($ IDA*/A*)	BFS based algorithms (A*)

Best-first search schema

- Keeps an OPEN list of nodes.
- Expands best node from OPEN.
- generate(x): insert x into OPEN.
- expand(x): delete x from OPEN and generate its children.
- Expanded nodes go into a CLOSED (hash table)
- BFS depends on its cost (heuristic) function.
Closed
$20 \quad 25$

| Open | 30 | 35 | 35 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Best-first search: Cost functions

- $g(n)$: Best known distance from the initial state to n
- $\underline{\mathrm{h}(\mathrm{n})}$: The estimated distance from n to the goal state.
- Examples:Air distance in maps

Manhattan Distance in the tile puzzle

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Different cost combinations of g and h

- $f(n)=l e v e l(n)$ Breadth-First Search.
- $f(n)=g(n) \quad$ Uniform Cost Search
(AKA Dijkstra's algorithms).
- $f(n)=h(n) \quad$ Pure Heuristic Search (PHS).
- $f(n)=g(n)+h(n)$ The A^{*} algorithm (1968).
- $f(n)$ in A^{*} is an estimation of the shortest path to the goal via n.
- \boldsymbol{h} is admissible if it is underestimating.
- \mathbf{A}^{*} theorem: Given an admissible heuristic h, A^{*} finds optimal solutions, complete and optimally effective. [Pearl 84]
- Result: any other optimal search algorithm will expand at least all the nodes expanded by A^{*}

Unidirectional search

Different costs functions:
Adding heuristics to unidirectional search is very beneficial

Breadth-first search (BFS)

Unidirectional breadth
first search (b^{d})

Bidirectional breadth-first search (BDS)

Bidirectional search algorithms

Two search frontiers: openF, openB

We select a node from either openF or openB

Once we have a match we stop with a solution

Challenge 1: The frontiers should meet

Siloam Tunnel

Many Bi-HS algorithms are guaranteed to meet!

Europe 1994

Challenge 2: guaranteeing Optimality

Challenge 2: guaranteeing Optimality

Many Bi-HS algorithms guarantee optimality - no open node below U

Other challenges

1) Guarantee that the frontiers meet - they might cross each other.
2) Guarantee optimality (when applicable).
3) Which side to expand next
4) Which node within the chosen side
5) Stopping condition (when do we halt)
6) How do we add heuristics

Front-to-end Heuristics

- Each node has a heuristic towards the opposite end

Front-To-End bidirectional search:

$$
\begin{aligned}
& \left.\mathrm{f}_{F}(\mathrm{u})=\mathrm{g}_{F}(\mathrm{u})+\mathrm{h}(\mathrm{u}, \text { goal })\right) \\
& \mathrm{f}_{B}(\mathrm{v})=\mathrm{g}_{B}(\mathrm{v})+\mathrm{h}(\text { start }, \mathrm{v})
\end{aligned}
$$

Heuristics for BDS

Front-To-Front bidirectional search:

$$
\mathrm{f}_{F}(\mathrm{n})=\mathrm{g}_{F}(\mathrm{n})+\min _{\text {mєopen } B}\left(\mathrm{~h}(\mathrm{n}, \mathrm{~m})+\mathrm{g}_{B}(\mathrm{~m})\right)
$$

Heuristics

Front-to-front heuristic is more accurate but takes more time to compute.

Front-to-front can be seen as a special case of front-to-end:

$$
\begin{aligned}
\mathrm{f}_{F}(\mathrm{n})= & \mathrm{g}_{F}(\mathrm{n})+\mathrm{h}_{F}(\mathrm{n}, \text { goal }) \\
& \mathrm{h}_{F}(\mathrm{n}, \text { goal })=\min _{\text {meopen } B}\left(\mathrm{~h}(\mathrm{n}, \mathrm{~m})+\mathrm{g}_{B}(\mathrm{~m})\right)
\end{aligned}
$$

Which side/node to expand

Alternate sides

Select node within the smallest OPEN

Select side/node with smallest $f(n)$

Select side/node with smallest $g(n)$

How to break ties?

Stopping Condition

3) Stopping condition (when do we halt?)

- Early stopping: U: the best known path Stop when no node is smaller than U
- Late stopping: When a node in both sides is chosen for expansion.

50 years on Bidirectional Search

MM: The first Bidirectional Heuristic Search that is guaranteed to meet in the middle

[Holte et al. AAAI-2016, AIJ-2017] (\#1,\#2)

Robert C. Holte Univ. of Alberta Canada

Ariel Felner Ben-Gurion Univ. Israel

Guni Sharon Ben-Gurion Univ. Israel

Nathan Sturtevant Univ. of Denver USA

Challenge 3: Where do they meet?

We present MM , the first bidirectional heuristic search algorithm that is guaranteed to meet exactly in the middle!

How MM works

Nodes are ordered by priority:

$\operatorname{pr}(n)=\max \begin{cases}g(n)+h(n) & \text { (case } 1) \\ 2 \times g(n) & \text { (case } 2)\end{cases}$ $\operatorname{pr}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\max \{\mathrm{g}(\mathrm{n}), \mathrm{h}(\mathrm{n})\}$

Expand a node (on either sides) with minimal pr(n)

When a node n is generated, check if n is in Open of the opposite side

Remember the cheapest path found (cost = U).

MM stops when $\mathrm{U} \leq \mathrm{LB}$
$L B=\max (C ; f \min F ; f m i n B ; g m i n F+g m i n B+e)$

Main lemma:

MM never expands nodes with $\mathrm{g}(\mathrm{n})>\mathrm{C}^{*} / 2$

Proof:

Result: must meet in the middle

- Let $\mathbf{g}(\mathbf{n})>C^{*} / \mathbf{2}$
- case 1: If $\mathbf{g}(\mathbf{n})<\boldsymbol{h}(\mathrm{n})$ then $\mathrm{pr}\left(\mathrm{r} \quad \mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})>\mathrm{C}^{*}\right.$
- case 2: If $\mathrm{g}(\mathrm{n})>\mathrm{h}(\mathrm{n})$ then $\mathrm{pr}\left(\mathrm{r} \quad \mathbf{2 g}(\mathrm{n}) \quad>\mathrm{C}^{*}\right.$
- OPEN always includes a bde \mathbf{x} on the optimal path with $\mathrm{pr}(\mathrm{x}) \leq \mathrm{C}^{*}$

$\mathbf{M M}=$ = Brute-force MM

$M M_{0}=M M$ with a heuristic $h(n)=0$ for all n.
$\operatorname{pr}(n)=\max \left\{\begin{array}{l}\mathrm{g}(\mathrm{n})+0=\mathrm{g}(\mathrm{n}) \\ 2 \times g(n)\end{array}\right\} \equiv g(\mathrm{n})$

Intermediate Summary

Region-Based Analysis

- Only unidirectional search (A*) does work on FF - Only MM/MMO does work on RN

Our Conjectures

1. With a sufficiently accurate heuristic A^{*} will expand fewer nodes than MM and MM_{0}.
2. With a moderately accurate heuristic, MM can expand fewer nodes than A^{*} and MM_{0} if $\mathrm{FF}>\mathrm{RN}$
3. With a sufficiently inaccurate heuristic, MM_{0} will expand fewer nodes than MM and A^{*} if $F F>R N$.

Experiments: 10-Pancake Puzzle, $C^{\star}=10$

	Better Heuristic Accuracy			
Algorithm	GAP-3	GAP-2	GAP-I	GAP
A* *	97,644	27,162	4,280	117
MM	7,507	6,723	2,448	165
MM0 4	5,551	5,551	5,551	5,551

\#states expanded

Fractional MM - fMM(P)

[Shaham, Felner, Chen and Sturtevant . SoCS-2017][(\#3)

$0 \leq P \leq 1$
Forward side:

$\operatorname{pr}(\mathrm{n})=\max \left\{\mathrm{g}_{\mathrm{F}}(\mathrm{n})+\mathrm{h}_{\mathrm{F}}(\mathrm{n})\right.$ $\mathrm{g}_{\mathrm{F}}(\mathrm{n}) / \mathrm{P}$

Backward side:

$\operatorname{pr}(\mathrm{n})=\max \left\{\begin{array}{l}\mathrm{g}_{\mathrm{B}}(\mathrm{n})+\mathrm{h}_{\mathrm{B}}(\mathrm{n}) \\ \mathrm{g}_{\mathrm{B}}(\mathrm{n}) /(1-\mathrm{P})\end{array}\right.$

Will meet at PC*,(1-P)C*

Restrained Algorithm

$\mathrm{A} \mathrm{Bi}-\mathrm{HS}$ algorithm \mathbf{A} is restrained if there exist $0 \leq P \leq 1$ such that:

A never expands forward nodes with $\quad \mathbf{g}_{\mathbf{F}}>\mathbf{P C}^{*}$ A never expands backword nodes with $\mathbf{g}_{\mathbf{B}}>$ (1-P)C*

MM and $\mathrm{fM} M$ are restrained

The Optimality of A^{*}

- "Given an admissible heuristic, A^{*} expands (up to tie breaking) the necessary and sufficient nodes to find an optimal solution and to prove that this solution is indeed optimal." [Dechter and Pearl, 1985]

All nodes with $f(u)=g(u)+h(u)<C^{*}$ must be expanded to prove a C^{\star} solution

Otherwise, there might be a shorter path from n to the goal

What about bidirectional search

What are the set of states that must be expanded by a bidirectional search?

In bidirectional search we have to talk about

$$
\underset{\text { of nodes }}{a \text { pair }(u, v)}
$$

The conditions for bidirectional search

[Eckerle, Chen, Sturtevant, Zilles and Holte, ICAPS-2017](#4)
Pair of nodes (\mathbf{u}, v) are a must-expand pair (MEP) if:

1) $\mathrm{f}_{\mathrm{F}}(\mathrm{u})=\mathrm{g}_{F}(\mathrm{u})+\mathrm{h}_{\mathrm{F}}(\mathrm{u})<\mathrm{C}^{*}$
2) $f_{B}(v)=g_{B}(v)+h_{B}(v)<C^{*}$
3) $\mathrm{g}_{F}(\mathrm{u})+\mathrm{g}_{B}(\mathrm{v}) \quad<\mathrm{C}^{*}$

- In a MEP we must check whether there is a shorter path from start to goal via \mathbf{u} and \mathbf{v}
- In a MEP either \mathbf{u} Or V must be expanded to verify a C* solution

Must Expand Pairs

MEP	NOMEP	

G must-expand (GMX)
 [Chen, Holte, Zilles, Sturtevant IJCAI-2017] (\#5)

- A bipartite graph.
- Includes all forward nodes with $\mathrm{f}_{F}<\mathrm{C}^{*}$

Forward

G must-expand (GMX)

- A bipartite graph.
- Includes all forward nodes with $\mathrm{f}_{F}<\mathrm{C}^{*}$
- Includes all backward nodes with $\mathrm{f}_{B}<\mathrm{C}$

Includes all backward nodes with $\mathrm{f}_{B}<\mathrm{C}^{*}$
Forward

E Must expand [Chen, Sturtervant, Holte, Zilles, IJCAI-2017]

- A bipartite graph.
- Includes all forward nodes with $\mathrm{f}_{F}<\mathrm{C}^{*}$
- Includes all backward nodes with $\mathrm{f}_{B}<\mathrm{C}^{*}$
- Edges between nodes with $\mathrm{g}_{F}+\mathrm{g}_{B}<\mathrm{C}^{*}$

Edges exist between must-expand pairs
Forward Backward

G must-expand (GMX) [Chen, Sturtervant, Holte, Zilles, IJCAI-2017]

- A bipartite graph.
- Includes all forward nodes with $\mathrm{f}_{F}<\mathrm{C}^{*}$
- Includes all backward nodes with $\mathrm{f}_{B}<\mathrm{C}^{*} \quad$ Forward
- Edges between nodes with $\mathrm{g}_{F}+\mathrm{g}_{B}<\mathrm{C}^{*}$
- Cluster nodes with the same g-value

G must-expand (GMX)

- GMX as clusters of nodes

The Minimum Vertex Cover of GMX (MVC) is a lower bound

Properties of MVC of GMX

[Shaham, Felner Chen and and Sturtevant. SoCS-2017][\#3]

Contiguous partition = VC

Properties of MVC [Shaham, Felner and Sturtevant. Socs-2017]

Contiguous partition = VC

Properties of MVC [Shaham, Felner and Sturtevant. Socs-2017]

Contiguous partition = VC

Properties of MVC [Shaham, Felner and Sturtevant. Socs-2017]

Contiguous partition = VC

Properties of MVC

[Shaham, Felner, Chen and Sturtevant. SoCS-2017]

Theorem:

MVC is one of these contiguous partitioning $T_{F}=2$

There exist $\mathrm{T}_{F}+\mathrm{T}_{B}=C^{*}$ such that:

All nodes with $\boldsymbol{g}_{\boldsymbol{F}}<\mathbf{T}_{\boldsymbol{F}} \in$ MVC
All nodes with $\boldsymbol{g}_{\boldsymbol{B}}<\mathrm{T}_{\boldsymbol{B}} \in$ MVC

MVC of GMX is Restrained

fMM and MVC

fMMMAicractrninnd

fMM $\left(P^{*}\right)$ is equivalent to A^{*}

Main result: There exists P^{*} such that $\mathrm{fMM}\left(\mathrm{P}^{*}\right)$ is optimally efficient

GMX for the pancake puzzle

- $C^{*}=13$

Properties of MVC [shaham et al. 2018]

- Contiguous partitiongs
- There exist $\mathrm{T}_{F}+\mathrm{T}_{B}=$ C * such that
- All nodes with $\boldsymbol{g}_{\boldsymbol{F}}<\mathrm{T}_{\boldsymbol{F}}$ are in MVC
- All nodes with $\boldsymbol{g}_{\boldsymbol{B}}<\mathbf{T}_{\boldsymbol{B}}$ are in MVC

Problem

GMX and C* are not known in advance \rightarrow P* cannot be known in advance either

Challenge: reason about GMX on the fly and try to expand a VC fast
The NBS algorithm [Chen et al. 2017] and The DVCBS algorithm [Shperberg et al. 2019] try to expand a VC fast

Parametric Algorithms

FMM and GBFSH

Two parametric algorithms which may expand exactly an MVC of GMX

1. $\mathrm{fMM}(\mathrm{p})\left[\right.$ [socs-2017] (fractional $M M$) meets at $\left[p C^{*},(1-p) C^{*}\right]$

The optimal parameters (\mathbf{p}^{*}) are instance dependent and are not known in advance

2. GBFSH [Barley et al., Socs2018], requires a split function and expand nodes according to the split function.

Algorithm: GBFSH
 [Barley et al. SoCS-2018] [\#6]

- Define $\boldsymbol{f}_{\text {lim }}$ initialized to h (start,goal)
- $\boldsymbol{f}_{\text {lim }}$ is incremented by 1 in each iteration.

In each iteration:

- We split $\boldsymbol{f}_{\text {lim }}=\boldsymbol{g}_{\text {Flim }}+\boldsymbol{g}_{\text {Blim }}(+\mathrm{e})$ according to an external split function
- In the forward side we expand all nodes n such that

$$
\boldsymbol{g}_{\boldsymbol{F}}(\mathrm{n})<\boldsymbol{g}_{\boldsymbol{F l i m}} \text { and } \boldsymbol{f}_{\boldsymbol{F}}(\mathrm{n}) \leq \boldsymbol{f}_{\text {lim }}
$$

- In the Backward side we expand all nodes that

$$
\boldsymbol{g}_{\boldsymbol{F}}(\mathrm{n})<\boldsymbol{g}_{\boldsymbol{F l i m}} \text { and } \boldsymbol{f}_{\boldsymbol{F}}(\mathrm{n}) \leq \boldsymbol{f}_{\text {lim }}
$$

- In each iteration one of $\boldsymbol{g}_{\boldsymbol{F l i m}}$ or $\boldsymbol{g}_{\boldsymbol{B l i m}}$ is increased.
- $f_{\text {lim }}=2$

$$
g_{\text {Flim }}=1 \quad g_{\text {Blim }}=1
$$

- $f_{l i m}=3$

$$
g_{\text {Flim }}=2 \quad g_{\text {Blim }}=1
$$

- $f_{l i m}=4$

$$
g_{\text {Flim }}=2 \quad g_{\text {Blim }}=2
$$

-What are good split functions?

- How do we mimic MM?

GBFSH

- When $f_{\text {lim }}$ and $g_{\text {Flim }}$ are both increased but $g_{\text {Blim }}$ remains the same
- In the forward side we:
- 1) expand all old nodes ($g<$ previous $g_{\text {Flim }}$) with $f=f_{\text {lim }}$
- 2) expand new nodes with previous $g_{\text {Flim }}$ but with $f \leq f_{\text {lim }}$
- Conjecture:

Non-Parametric GMX-based Algorithms

The NBS algorithm [Chen et al. 2017] and
The DVCBS algorithm [shperberg et al. 2019] try to expand a VC fast

The NBS Algorithm ${ }_{\text {[chen, Holte, zilles, Sturtevont. IJCAT-2017] }}$ Near-optimal Bidirectional Search

Pair of nodes (u, v) is a must-expand pair (MEP) if:

$$
\begin{aligned}
& \mathbf{f}_{F}(\mathrm{u})=\mathrm{g}_{F}(\mathrm{u})+\mathrm{h}_{F}(\mathrm{u})<\mathrm{C}^{*} \\
& \mathrm{f}_{B}(\mathrm{v})=\mathrm{g}_{B}(\mathrm{v})+\mathrm{h}_{B}(\mathrm{v})<\mathrm{C}^{*} \\
& \mathbf{g}_{F}(\mathrm{u})+\mathrm{g}_{B}(\mathrm{v})<\mathrm{C}^{*}
\end{aligned}
$$

The NBS Algorithm ${ }_{\text {[chen, Holte, zilles, Sturtevent, ITcAT-2017] }}$ Near-optimal Bidirectional Search

$$
\begin{aligned}
& f_{F}(u)=g_{F}(u)+h_{F}(u) \\
& f_{B}(v)=g_{B}(v)+h_{B}(v) \\
& g_{F}(u)+g_{B}(v)
\end{aligned}
$$

The NBS Algorithm ${ }_{\text {[chen, Holte, zilles, Sturtevont. IJCAT-2017] }}$ Near-optimal Bidirectional Search

For each pair of nodes (\mathbf{u}, \mathbf{v}) we define:

$$
\mathrm{lb}(\mathrm{u}, \mathrm{v})=\mathrm{MAX}\left\{\begin{array}{l}
\mathrm{f}_{F}(\mathrm{u})=\mathrm{g}_{F}(\mathrm{u})+\mathrm{h}_{F}(\mathrm{u}) \\
\mathrm{f}_{B}(\mathrm{v})=\mathrm{g}_{B}(\mathrm{v})+\mathrm{h}_{B}(\mathrm{v}) \\
\mathrm{g}_{F}(\mathrm{u})+\mathrm{g}_{B}(\mathrm{v})
\end{array}\right.
$$

- Find the pair (u, v) in open with minimal $\mathrm{lb}(u, v)$
- Expand them both.

NBS

NBS: Main properties

1) NBS finds an optimal solution
2) NBS is at most twice than OPTIMAL

Why? Taking both vertices of disjoint edges is a VC $\leq \mathbf{2}$ MVC
3) No other algorithm can have a better worst-case bound
4) NBS is robust

3) New Algorithm:

Dynamic Vertex-cover Bidirectional Search (DVCBS) [Shperberg , Felner, Shimony and Sturtevant. AAAI 2019][\#7]

- NBS expanded both nodes
- DVCBS maintains dynamic GMX (DGMX) that uses the currently known information from Open nodes
- Repeatedly find MVC of DGMX and expand it

Many variants exist

Execution of DVCBS

DGMX

(a) Problem Instance

$\mathrm{lb}=1$

Execution of DVCBS

DGMX

(a) Problem Instance

lb=2

Execution of DVCBS

DGMX

(a) Problem Instance

$\mathrm{lb}=2$

No upper bound for DVCBS

DVCBS

- Optimal path $\mathrm{s}, \mathrm{x}, \mathrm{g}$. Cost 2K-1.
- MVC is $\{X, Y, g\}$. NBS expans 6 nodes.
- DVCBS never expands Y.
- Generates (X, Y). This is a cluster of 2 nodes.
- It expands all the Vi nodes. K+1 nodes. Unbounded.

Experiments

All Algorithms: Nodes Expanded

		VC	Ratio VC/MVC	First solution		
20-Pancake Puzzle						
Gap-2	A^{*}	322,299	2.65	322,378		
	NBSF	208,648	1.71	209,723		
	NBSA	151,616	1.24	152,046		
	DVSBSF	141,111	1.16	141,669		
	DVCBSA	122,054	1.00	122,587		
4-peg Towers of Hanoi						
	A^{*}	3,239,287	4.75	3,268,093		
6+6	NBSF	234,165	1.91	234,165		
	NBSA	232,268	1.89	232,268		
	DVCBSF	704,213	1.03	707,679		
	DVCBSA	690,389	1.01	691,159		

DVCBSA is the winner in all aspects, many time is exactly MVC

Summary

- Non-parametric GMX-based algorithms
- NBS - worst case guarantee (2x)
- DVCBS - no guarantee but better average-case performance

Case 2

Assuming Consistent Heuristic

Assumptions [Dechter \& Pearl 85]

Problem Instances

Traditionally, the analysis assumed that:

1) The algorithm can only assume admissibility
2) The actual instances are from $\mathbf{I}_{\text {Con }}$

The algorithms cannot exploit the fact that they are running on consistent heuristics

Case 1: Knowing Epsilon

- Sometimes we have a lower bound ε on the edge costs

Pair of nodes (\mathbf{u}, \mathbf{v}) are a must-expand pair (MEP) if:

1) $\mathrm{f}_{F}(\mathrm{u})=\mathrm{g}_{F}(\mathrm{u})+\mathrm{h}_{F}(\mathrm{u})<\mathrm{C}^{*}$
2) $f_{B}(v)=g_{B}(v)+h_{B}(v)<C^{*}$
3) $\mathrm{g}_{F}(\mathrm{u})+\mathrm{g}_{B}(\mathrm{v})+\varepsilon<\mathrm{C}^{*}$

No knowledge on ε

Assuming $\varepsilon=1$

$$
\mathbf{T}_{\boldsymbol{F}=1}^{(\mathrm{c})}
$$

Fractional MM - fMM(P)

$0 \leq P \leq 1$
Forward side:
$\operatorname{pr}(\mathrm{n})=\max \left\{\begin{array}{l}\mathrm{g}_{\mathrm{F}}(\mathrm{n})+\mathrm{h}_{\mathrm{F}}(\mathrm{n}) \\ \mathrm{g}_{\mathrm{F}}(\mathrm{n}) / \mathrm{P}+\varepsilon\end{array}\right.$
Backward side:

Will meet at PC*,(1-P)C*

Case 2: Assuming consistency

$$
\text { (a) } \xrightarrow{h_{\mathrm{F}}(\mathrm{a})=10}
$$

We can construct a front-to-front heuristic $\boldsymbol{h}_{\boldsymbol{C}}$

$$
h_{C}(u, v)=\max \left\{\begin{array}{l}
\left|h_{F}(u)-h_{F}(v)\right| \\
\left|h_{B}(u)-h_{B}(v)\right|
\end{array}\right.
$$

Case 2: assuming consistency

Pair of nodes (\mathbf{u}, v) are a must-expand pair (MEP) if:

1) $\mathrm{f}_{F}(\mathrm{u})=\mathrm{g}_{F}(\mathrm{u})+\mathrm{h}_{F}(\mathrm{u})<\mathrm{C}^{*}$
2) $f_{B}(v)=g_{B}(v)+h_{B}(v)<C^{*}$
3) $\mathrm{g}_{F}(\mathrm{u})+\mathrm{g}_{B}(\mathrm{v})+h_{C}(\mathrm{u}, \mathrm{v})<\mathrm{C}^{*}$

It is not restrained We have a counter example

Case 2: assuming consistency

- In GMX for each nodes we have two new dimensions:
- (1) h_{F}-value
- (2) h_{B}-value
- In this case there isn't any one threshold T for MVC but a matrix of thresholds T, based on the $\mathbf{h}_{\mathbf{F}^{-}}$and \mathbf{h}_{B}-values

	$\mathbf{h}_{\mathbf{F}}=\mathbf{1}$	$\mathbf{h}_{\mathbf{F}}=\mathbf{2}$	$\mathbf{h}_{\mathbf{F}}=\mathbf{3}$
$\mathbf{h}_{B}=1$	4	5	4
$\mathbf{h}_{B}=2$	3	4	5
$\mathbf{h}_{B}=3$	2	3	4

	$\mathbf{h}_{\mathbf{F}}=1$	$\mathbf{h}_{\boldsymbol{F}}=2$	$\mathbf{h}_{\boldsymbol{F}}=3$
$\mathbf{h}_{B}=1$	4	5	4
$\mathbf{h}_{B}=2$	3	4	5
$\mathbf{h}_{B}=3$	2	3	4

There exists a 2-dimentional function $\mathrm{T}\left(\mathbf{h}_{F}, \mathbf{h}_{B}\right)$ that provides these thresholds

$$
\begin{array}{r}
\left|\mathrm{T}\left(x_{1}, y_{1}\right)-\mathrm{T}\left(x_{2}, y_{2}\right)\right| \leq \\
\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}
\end{array}
$$

Very similar to a 1-Lipschitz requirement in math

Summary

- fMM is restrained
- MVC of GMX is restrained
- $\mathrm{fMM}\left(\mathrm{P}^{*}\right)$ is optimally efficient
- $\quad \mathrm{fMM}\left(\mathrm{P}\left(\mathbf{h}_{\boldsymbol{F}}(\mathrm{n}), \mathbf{h}_{\boldsymbol{B}}(\mathrm{n})\right)\right.$ is optimally efficient if the algorithm can exploit the fact that the heuristic is consistent

Bound propagations
 Shperberg, Felner, Shimony and Stortevant, SoCS-2019][\#9]

$\mathrm{lb}(\mathrm{u}, \mathrm{v})=\mathrm{MAX}\left\{\begin{array}{l}\mathrm{f}_{F}(\mathrm{u})=\mathrm{g}_{F}(\mathrm{u})+\mathrm{h}_{F}(\mathrm{u}) \\ \mathrm{f}_{B}(\mathrm{v})=\mathrm{g}_{B}(\mathrm{v})+\mathrm{h}_{B}(\mathrm{v}) \\ \mathrm{g}_{F}(\mathrm{u})+\mathrm{g}_{B}(\mathrm{v})\end{array}\right.$
$\mathrm{lb}(\mathrm{u})=\min \mathrm{v}^{\prime}\left\{\mathrm{lb}\left(\mathrm{u}, \mathrm{v}^{\prime}\right)\right\}$
f -values are changed to their lb-values

New algorithm assuming consistency

DIBBS: Sewel and Jaconson (AIJ)

BEA*: [Alcazar, Barley and Riddle (AAAI-2020)

Case 2: assuming consistency

Pair of nodes (\mathbf{u}, \mathbf{v}) are a must-expand pair (MEP) if:

1) $\mathrm{g}_{F}(\mathrm{u})+\mathrm{h}_{F}(\mathrm{u})+\Delta(\mathrm{v})<\mathrm{C}^{*}$
2) $g_{B}(v)+h_{B}(v)+\Delta(u)<C^{*}$
3) $g_{F}(u)+g_{B}(v)+h_{C}(u, v)<C^{*}$

$$
h_{C}(u, v)=\max \left\{\begin{array}{l}
\left|h_{F}(u)-h_{F}(v)\right| \\
\left|h_{B}(u)-h_{B}(v)\right|
\end{array}\right.
$$

Case 2: assuming consistency

Pair of nodes (\mathbf{u}, \mathbf{v}) are a must-expand pair (MEP) if:

1) $g_{F}(u)+h_{F}(u)+g_{B}(v)-h_{F}(v)<C^{*}$

$$
\mathrm{g}_{F}(\mathrm{u})+\mathrm{g}_{\mathrm{B}}(\mathrm{v})+\mathrm{h}_{F}(\mathrm{u})-\mathrm{h}_{F}(\mathrm{v})<\mathrm{C}^{*}
$$

2) $g_{B}(v)+h_{B}(v)+g_{F}(u)-h_{B}(u)<C^{*}$

$$
g_{B}(v)+g_{F}(u)+h_{B}(v)-h_{B}(u)<C^{*}
$$

3) $g_{F}(u)+g_{B}(v)+h_{C}(u, v)<C^{*}$
