
• Multi-robot	path	finding
• Given:	a	number	of	robots	(each	with	a	start	and	goal	

location)	and	a	known	environment
• Task:	find	collision-free	paths	for	the	robots	from	their	

start	to	their	goal	locations	that	minimize	some	objective

Multi-Agent	Path	Finding	(MAPF)



Multi-Agent	Path	Finding	(MAPF)

4-neighbor grid



4-neighbor grid

Multi-Agent	Path	Finding	(MAPF)



4-neighbor grid

Multi-Agent	Path	Finding	(MAPF)



4-neighbor grid

Multi-Agent	Path	Finding	(MAPF)



4-neighbor grid

Multi-Agent	Path	Finding	(MAPF)



4-neighbor grid

Multi-Agent	Path	Finding	(MAPF)



4-neighbor grid

Multi-Agent	Path	Finding	(MAPF)



4-neighbor grid

Multi-Agent	Path	Finding	(MAPF)



• Optimization	problem	with	the	objective	to	minimize	
task-completion	time	(called	makespan)	or	
the	sum	of	travel	times	(called	flowtime)

4-neighbor grid

Multi-Agent	Path	Finding	(MAPF)



Multi-Agent	Path	Finding	(MAPF)

• Application:	Amazon	fulfillment	centers

[work by Kiva Systems/Amazon Robotics, not me]4-neighbor grid



• Optimal	MAPF	algorithms
– Theorem	[Yu	and	LaValle]:	MAPF	is	NP-hard	to	solve	
optimally	for	makespan or	flowtime	minimization

• Bounded-suboptimal	MAPF	algorithms
– Theorem:	MAPF	is	NP-hard	to	approximate	within	any	
factor	less	than	4/3	for	makespan minimization	on	
graphs	in	general

Multi-Agent	Path	Finding	(MAPF)

[www.random-ideas.net]



Multi-Agent	Path	Finding	(MAPF)

A B C D E

1 S2

2 S1

3 G1

4 G2

4-neighbor grid



A*-Based	Search

• A*-based	search:	Optimal	(or	bounded-suboptimal)	MAPF	solver

A2
B1

…
A2
B1

A2
C1

A3
B2

A B C D E

1 S2

2 S1

3 G1

4 G2



Conflict-Based	Search

• Conflict-based	search	[Sharon,	Stern,	Felner and	Sturtevant]:	
Optimal	(or	bounded-suboptimal)	MAPF	solver	that	plans	for	
each	agent	independently

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4

Add	constraint:
the	blue	agent	is	not	allowed
to	be	in	cell	D3	at	time	4

A B C D E

1 S2

2 S1

3 G1

4 G2

4-neighbor grid [work by Ben-Gurion University of the Negev, not me]



Conflict-Based	Search

• Conflict-based	search	[Sharon,	Stern,	Felner and	Sturtevant]:	
Optimal	(or	bounded-suboptimal)	MAPF	solver	that	plans	for	
each	agent	independently

To	minimize	the	sum	of	the	travel	times	of	all	agents
perform	a	best-first	search	on	this	tree	with
• g	=	sum	of	travel	times	of	all	agents
• h	=	0

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4

Add	constraint:
the	blue	agent	is	not	allowed
to	be	in	cell	D3	at	time	4

A B C D E

1 S2

2 S1

3 G1

4 G2

4-neighbor grid



Improvement	1

• Use	more	informed	(=	non-zero)	h-values

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4

Add	constraint:
the	blue	agent	is	not	allowed
to	be	in	cell	D3	at	time	4

The	sum	of	travel	times	of	any	collision-free	
solution	is	at	least	11.

A B C D E

1 S2

2 S1

3 G1

4 G2

4-neighbor grid



Improvement	1

• Use	more	informed	(=	non-zero)	h-values

h	=	1
cardinal	conflict

The	sum	of	travel	times	of	any	collision-free	
solution	is	at	least	11.

A B C D E

1 S2

2 S1

3 G1

4 G2

4-neighbor grid



Improvement	1

• Use	more	informed	(=	non-zero)	h-values

h	=	3

minimum	vertex
cover	is	3

4-neighbor grid



Improvement	2

• Symmetry	breaking	of	rectangle	conflicts

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4

Add	constraint:
the	blue	agent	is	not	allowed
to	be	in	cell	D3	at	time	4

The	sum	of	travel	times	of	any	collision-free	
solution	is	at	least	11	but	conflict-based	search	
does	not	detect	it	right	away.

A B C D E

1 S2

2 S1

3 G1

4 G2

4-neighbor grid



Improvement	2

• Symmetry	breaking	of	rectangle	conflicts

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4

Add	constraint:
the	blue	agent	is	not	allowed
to	be	in	cell	D3	at	time	4

A B C D E

1 S2

2 S1

3 G1

4 G2

A B C D E

1 S2

2 S1

3 G1

4 G2

A B C D E

1 S2

2 S1

3 G1

4 G2



Improvement	2

• Symmetry	breaking	of	rectangle	conflicts

A B C D E

1 S2

2 S1

3 G1

4 G2

4-neighbor grid



Improvement	2

• Symmetry	breaking	of	rectangle	conflicts

Add	constraint:
the	blue	agent	is	not	allowed
to	be	in	cell	D3	at	time	4,
in	cell	C3	at	time	3	
or	in	cell	B2	at	time	2

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4
or	in	cell	D2	at	time	3

barrier	constraints

A B C D E

1 S2

2 S1

3 G1

4 G2



Improvement	3

• Disjoint	splitting

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4

Add	constraint:
the	blue	agent	is	not	allowed
to	be	in	cell	D3	at	time	4

A B C D E

1 S2

2 S1

3 G1

4 G2

A B C D E

1 S2

2 S1

3 G1

4 G2

A B C D E

1 S2

2 S1

3 G1

4 G2



Improvement	3

• Disjoint	splitting

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4

Add	constraint:
the	red	agent	must
be	in	cell	D3	at	time	4

A B C D E

1 S2

2 S1

3 G1

4 G2

A B C D E

1 S2

2 S1

3 G1

4 G2

A B C D E

1 S2

2 S1

3 G1

4 G2



Improvement	3

• Disjoint	splitting

Add	constraint:
the	red	agent	is	not	allowed

to	be	in	cell	D3	at	time	4

Add	constraint:
the	red	agent	must
be	in	cell	D3	at	time	4
which	implies	that	all
the	other	agents	are	not	
allowed	to	be	in	cell	D3	
at	time	4

A B C D E

1 S2

2 S1

3 G1

4 G2

4-neighbor grid



Improvement	3

• Disjoint	splitting

A B C D E

1 S2

2 S1 G1

3 G2

Original	CBS Disjoint	CBS
Pruned

4-neighbor grid



• Rapid	random	restarts	help	to	solve	
more	multi-agent	path	finding	
problems	within	a	given	runtime	limit.

• Here:	We	randomize	the	ordering	in	
which	the	agents	plan	their	paths	in	
the	high-level	root	node.

Improvement	4

runs time	limit 38	“easy”	 12	“hard” 50	total

1 300	sec 100.00% 0.00% 76.00%

3 100	sec 97.65% 96.87% 97.60%

5 60	sec 98.57% 98.81% 98.70%

runtime



Conflict-Based	Search

Bounded-Suboptimal
MAPF	Planning

Optimal	
MAPF	Planning

CBS

CBS	with	heuristics

CBS	with	heuristics
and	symmetry	breaking

(E)CBS

(E)CBS	with	highways
and	parallel	runs

CBS	with	heuristics
and	symmetry	breaking

CBS

CBS	with	heuristics
(E)CBS

(E)CBS	with	highways
and	parallel	runs

4-neighbor grid



Conflict-Based	Search

[Wurman,	D’Andrea and	Mountz]

4-neighbor grid



• Runtime	on	135x31	grids	
• 250	agents	and	20,000	random	pickup-and-delivery	tasks
• Makespan ≈		0.5	hour
• Mean	total	planning	time	≈	10s

Lifelong	Multi-Agent	Path	Finding

4-neighbor grid



More	Information	on	MAPF

• Go	to	mapf.info	for	more	information	on	MAPF



Acknowledgments

• This	tutorial	reported	on	joint	work	with	a	large	
number	of	collaborators	(including	students)	from	the	
University	of	Southern	California	and	elsewhere.	We	
would	like	to	acknowledge	their	contributions

• Special	thanks	to	K.	Arras,	A.	Arunasalam,	N.	Ayanian,	E.	
Boyarski,	T.	Cai,	D.	Chan,	H.	Choset,	L.	Cohen,	K.	Daniel,	A.	
Felner,	D.	Harabor,	C.	Hernandez,	W.	Hoenig,	S.	Jahangiri,	T.	K.	
S.	Kumar,	M.	Likhachev,	H.	Ma,	P.	Meseguer,	A.	Nash,	L.	
Palmieri,	G.	Sharon,	X.	Sun,	P.	Stuckey,	N.	Sturtevant,	C.	Tovey,	
T.	Uras,	G.	Wagner,	H.	Xu,	W.	Yeoh,	S.	Young	and	D.	Zhang

• Thanks	to	Amazon,	ARO,	IBM,	JPL,	NSF,	ONR	for	
funding!



Acknowledgments

• Please	visit	idm-lab.org/projects.html	for	more	
information,	pointers	to	the	literature	and	our	
publications

• If	you	have	any	interesting	ideas,	please	send	me	an	
email:	skoenig@usc.edu


