Any-Angle Search

- Do not restrict paths to a grid or an a-priori given graph to find optimal paths in continuous environments

Any-Angle Search

[from JPL]

- A. Nash and S. Koenig. Any-Angle Path Planning. Artificial Intelligence Magazine, 34(4), 85-107, 2013.

A* on Visibility Graphs

figure is notional

A* on Visibility Graphs

- A* on Visibility Graphs [Lozano-Perez et al.]
- Note: Sophisticated versions exist, e.g. [Shah and Gupta]

- Shortest path in 2D terrain
- Slow due to many edges and line-of-sight checks

A* on Grid Graphs

figure is notional

A* on Grid Graphs

- A* on grid graphs

- A* assigns two values to every vertex s
- $g(s)$: the length of the shortest path from the start vertex to s found so far
- parent(s): the parent pointer used to extract the path after termination
- Following the parents from s to the start vertex results in a path of length $g(s)$

8-neighbor grid

A* on Grid Graphs

- A* on grid graphs

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded

A* on Grid Graphs

- A* on grid graphs

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded

A* on Grid Graphs

- A* on grid graphs

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded

A* on Grid Graphs

- A* on grid graphs

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded

A* on Grid Graphs

- A* on grid graphs

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded

A* on Grid Graphs

Dimension	Regular Grid	Neighbors	\% Longer Than Shortest Path
2D	triangular grid corners	3-neighbor	≈ 100
		6-neighbor	≈ 15
	square grid corners	4-neighbor	≈ 41
		8-neighbor	≈ 8
	hexagonal grid centers	6-neighbor	at least ≈ 15
		12-neighbor	at least ≈ 4
3D	cubic grid corners	6-neighbor	at least ≈ 73
		26-neighbor	at least ≈ 13

Grids with Higher Degree Vertices

- Grid path finding on the 2^{k} neighborhoods [Rivera et al.]

$2^{2}=4$
neighborhood

$2^{3}=8$
neighborhood

$2^{4}=16$
neighborhood

A* with Post Smoothing

- A* with Post Smoothing [Thorpe; Botea et al.; Millington]

A* with Post Smoothing

- A* with Post Smoothing

8-neighbor grid

A* with Post Smoothing

- A* with Post Smoothing

8-neighbor grid

A* with Post Smoothing

- A* with Post Smoothing

8-neighbor grid

A* with Post Smoothing

- A* with Post Smoothing

A* with Post Smoothing

- A* with Post Smoothing

- Postprocessing often leaves path homotopy unchanged
- Better to interleave the search and the optimization

Suboptimal Any-Angle Search

figure is notional

Suboptimal Theta*

- Theta*

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded

Suboptimal Theta*

- Theta*

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded
----Path 1 Path 2
8-neighbor grid

Suboptimal Theta*

- Theta*

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded
----Path 1 Path 2
8-neighbor grid

Suboptimal Theta*

- Theta*

----Path 1 Path 2
8-neighbor grid

Suboptimal Theta*

- Theta*

----Path 1 Path 2
8-neighbor grid

Suboptimal Theta*

- Theta*

----Path 1 Path 2
8-neighbor grid

Suboptimal Theta*

- Theta*

----Path 1 Path 2
8-neighbor grid

Suboptimal Theta*

- Theta*

----Path 1 Path 2
8-neighbor grid

Suboptimal Theta*

- Theta*

\rightarrow Parent pointer
\bigcirc Vertex currently being expanded
----Path 1 Path 2
8-neighbor grid

Suboptimal Theta*

- Theta* is not guaranteed to find shortest paths since the parent of a vertex can only be a neighbor of the vertex or the parent of a neighbor

- The length of the path is still within 0.2% of optimal 8 -neighbor grid

Suboptimal Lazy Theta*

figure is notional

Alternatives to Theta

- Other any-angle search algorithms
- Several versions of Theta*: Lazy Theta*, Theta* on Subgoal Graphs (SUB-TL)
- Accelerated A* [Sislak et al.] a sophisticated version of Theta*
- Field D* [Ferguson and Stentz] an any-angle version of D* (Lite) with interpolation

- Block A* [Yap et al.] an any-angle version of A^{*} that operates on blocks of cells
- Anya and Polyanya [Harabor et al.] any-angle search methods for 2D that find shortest paths

