Any-Angle Search

 Do not restrict paths to a grid or an a-priori given graph to find optimal paths in continuous environments

Any-Angle Search

• A. Nash and S. Koenig. Any-Angle Path Planning. Artificial Intelligence Magazine, 34(4), 85-107, 2013.

A* on Visibility Graphs

figure is notional

A* on Visibility Graphs

- A* on Visibility Graphs [Lozano-Perez et al.]
- Note: Sophisticated versions exist, e.g. [Shah and Gupta]

- Shortest path in 2D terrain
- Slow due to many edges and line-of-sight checks

figure is notional

- A* assigns two values to every vertex s
 - g(s): the length of the shortest path from the start vertex to s found so far
 - parent(s): the parent pointer used to extract the path after termination
 - Following the parents from s to the start vertex results in a path of length g(s)

Dimension	Regular Grid	Neighbors	% Longer Than Shortest Path
2D	triangular grid corners	3-neighbor	≈ 100
		6-neighbor	≈ 15
	square grid corners	4-neighbor	≈ 41
		8-neighbor	≈ 8
	hexagonal grid centers	6-neighbor	at least ≈ 15
		12-neighbor	at least ≈ 4
3D	cubic grid corners	6-neighbor	at least ≈ 73
		26-neighbor	at least ≈ 13

Grids with Higher Degree Vertices

Grid path finding on the 2^k neighborhoods [Rivera et al.]

2²=4 neighborhood

2³=8 neighborhood

A* with Post Smoothing [Thorpe; Botea et al.; Millington]

- Better to interleave the search and the optimization

Suboptimal Any-Angle Search

Theta*

• Theta*

• Theta*

8-neighbor grid

• Theta*

• Theta*

• Theta*

8-neighbor grid

• Theta*

8-neighbor grid

• Theta*

• Theta*

 Theta* is not guaranteed to find shortest paths since the parent of a vertex can only be a neighbor of the vertex or the parent of a neighbor

• The length of the path is still within 0.2% of optimal 8-neighbor grid

Suboptimal Lazy Theta*

Alternatives to Thetak

Other any-angle search algorithms

Several versions of Theta*: Lazy Theta*,
 Theta* on Subgoal Graphs (SUB-TL)

Accelerated A* [Sislak et al.]
 a sophisticated version of Theta*

Field D* [Ferguson and Stentz]
 an any-angle version of D* (Lite)
 with interpolation

 Block A* [Yap et al.]
 an any-angle version of A* that operates on blocks of cells

 Anya and Polyanya [Harabor et al.] any-angle search methods for 2D that find shortest paths

[work done by different research groups]