
Any-Angle	Search

• Do	not	restrict	paths	to	a	grid	or	an	a-priori	given	graph	to	
find	optimal	paths	in	continuous	environments



Any-Angle	Search

[from	JPL]

Goal

Start

• A.	Nash	and	S.	Koenig.	Any-Angle	Path	Planning. Artificial	Intelligence	
Magazine, 34(4),	85-107,	2013.



A*	on	Visibility	Graphs

Path Length

C
om

pu
ta

tio
n 

Ti
m

e

A* on visibility graphs

A* grid graphs

figure	is	notional

A* on grid graphs



A*	on	Visibility	Graphs

• A*	on	Visibility	Graphs	[Lozano-Perez	et	al.]
• Note:	Sophisticated	versions	exist,	e.g.	[Shah	and	Gupta]

• Shortest	path	in	2D	terrain
• Slow	due	to	many	edges	and	line-of-sight	checks

Goal

Start



A*	on	Grid	Graphs

Path Length

C
om

pu
ta

tio
n 

Ti
m

e

A* on visibility graphs

A* grid graphs

figure	is	notional

A* on grid graphs



A*	on	Grid	Graphs

• A*	on	grid	graphs

• A*	assigns	two	values	to	every	vertex	s
– g(s):	the	length	of	the	shortest	path	from	the	start	vertex	to	s	found	so	far
– parent(s):	the	parent	pointer	used	to	extract	the	path	after	termination
– Following	the	parents	from	s	to	the	start	vertex	results	in	a	path	of	length	g(s)

Goal

Start
A

B

C

1 2 3 4 5

8-neighbor grid



A*	on	Grid	Graphs

• A*	on	grid	graphs

Goal

Start

Arrows point to the parent of a vertex
Vertex currently being expanded

A

B

C

1 2 3 4 5

Parent	pointer

8-neighbor grid



A*	on	Grid	Graphs

• A*	on	grid	graphs

Goal

Start

Arrows point to the parent of a vertex
Vertex currently being expanded

A

B

C

1 2 3 4 5

Parent	pointer

8-neighbor grid



A*	on	Grid	Graphs

• A*	on	grid	graphs

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

8-neighbor grid



A*	on	Grid	Graphs

• A*	on	grid	graphs

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

from	now	on,	we	will	show	only	the	cells8-neighbor grid



A*	on	Grid	Graphs

• A*	on	grid	graphs

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

from	now	on,	we	will	show	only	the	cells8-neighbor grid



A*	on	Grid	Graphs

Dimension Regular Grid Neighbors
% Longer Than 
Shortest Path

2D

triangular grid
corners

3-neighbor ≈ 100
6-neighbor ≈ 15

square grid
corners

4-neighbor ≈ 41
8-neighbor ≈ 8

hexagonal grid
centers

6-neighbor at least ≈ 15
12-neighbor at least ≈ 4

3D cubic grid
corners

6-neighbor at least ≈ 73
26-neighbor at least ≈ 13



Grids	with	Higher	Degree	Vertices

• Grid	path	finding	on	the	2k neighborhoods	[Rivera	et	al.]

22=4
neighborhood

23=8
neighborhood

24=16
neighborhood



A*	with	Post	Smoothing

• A*	with	Post	Smoothing	[Thorpe;	Botea et	al.;	Millington]

Goal

Start
A

B

C

1 2 3 4 5

8-neighbor grid



A*	with	Post	Smoothing

• A*	with	Post	Smoothing

Goal

Start
A

B

C

1 2 3 4 5

8-neighbor grid



A*	with	Post	Smoothing

• A*	with	Post	Smoothing

Goal

Start
A

B

C

1 2 3 4 5

8-neighbor grid



A*	with	Post	Smoothing

• A*	with	Post	Smoothing

Goal

Start
A

B

C

1 2 3 4 5

8-neighbor grid



A*	with	Post	Smoothing

• A*	with	Post	Smoothing

Goal

Start



A*	with	Post	Smoothing

• A*	with	Post	Smoothing

• Postprocessing	often	leaves	path	homotopy unchanged
• Better	to	interleave	the	search	and	the	optimization

Goal

Start

Shortest grid path
Shortest path Traversed grid cell

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A

B

C

D

E

G

F



any-angle search
methods

Suboptimal	Any-Angle	Search

Path Length

C
om

pu
ta

tio
n 

Ti
m

e
A* on visibility graphs

A* on grid graphs

Any-Angle Find-Path
Algorithms

figure	is	notional

Theta*



Suboptimal	Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

8-neighbor grid



Suboptimal	Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

Path 1 Path 2
8-neighbor grid



Suboptimal	Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

Path 1 Path 2
8-neighbor grid



Suboptimal	Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

Path 1 Path 2
8-neighbor grid



Suboptimal	Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

Path 1 Path 2
8-neighbor grid



Suboptimal	Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

Path 1 Path 2
8-neighbor grid



Suboptimal	Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

Path 1 Path 2
8-neighbor grid



Suboptimal	Theta*

• Theta*

Goal

Start
A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

Path 1 Path 2
8-neighbor grid



Suboptimal	Theta*

• Theta*

Start

Goal

A

B

C

1 2 3 4 5

Arrows point to the parent of a vertex
Vertex currently being expanded
Parent	pointer

Path 1 Path 2
8-neighbor grid



Suboptimal	Theta*

• Theta*	is	not	guaranteed	to	find	shortest	paths	since	the	
parent	of	a	vertex	can	only	be	a	neighbor	of	the	vertex	or	the	
parent	of	a	neighbor

• The	length	of	the	path	is	still	within	0.2%	of	optimal

Theta*	path
Shortest	path

Start

Goal

1 2 3 4 5 6 7 8 9 10
A

B

C

D

E

8-neighbor grid



Suboptimal	Lazy	Theta*

Path Length

C
om

pu
ta

tio
n 

Ti
m

e
A* on visibility graphs

A* on grid graphs

Any-Angle Find-Path
Algorithms

any-angle search
methods

figure	is	notional

Theta*

Weighted LazyTheta*
LazyTheta*



Alternatives	to	Theta*

• Other	any-angle	search	algorithms
– Several	versions	of	Theta*:	Lazy	Theta*,

Theta*	on	Subgoal Graphs	(SUB-TL)
– Accelerated	A*	[Sislak et	al.]

a	sophisticated	version	of	Theta*	
– Field	D*	[Ferguson	and	Stentz]

an	any-angle	version	of	D*	(Lite)	
with	interpolation	

– Block	A*	[Yap	et	al.]
an	any-angle	version	of	A*	that	operates	on	
blocks	of	cells

– Anya	and	Polyanya [Harabor et	al.]
any-angle	search	methods	for	2D	that	find	
shortest	paths	

[work done by different research groups]

[from	JPL]

[from	Zhao,	Tania	and	Harabor]

Sp
ee
d-
up

	v
s.
	A
*	
on

	g
rid

Expanded	nodes	by	A*on	grids


