
Basic Multi-agent Path Planning Problem

Input:
𝐺 ≔ 𝑉, 𝐸 , 𝐴 ≔ {𝑎1, … , 𝑎𝑛}, 𝑥𝐼 , 𝑥𝐺: 𝐴 → 𝑉

Output:
𝑃 ≔ {𝑝1, … , 𝑝𝑛}, 𝑝𝑖: ℤ

+ → 𝑉, that takes the agents from
𝑥𝐼 𝐴 to 𝑥𝐺(𝐴), free of collision.

Time Optimal Multi-agent Path Planning on Graphs*
Jingjin Yu and Steven M. LaValle

University of Illinois at Urbana-Champaign

* This research was supported in part by NSF grant 0904501 (IIS Robotics), NSF grant 1035345 (Cyberphysical Systems), DARPA SToMP grant HR0011-05-1-0008, and MURI/ONR grant N00014-09-1-1052.

Types of Collisions

1 2 1 2

“Meet” collision
(collision on a vertex)

“Head-on” collision
(collision on an edge)

Time Optimal Multi-agent Path Planning

Given a path 𝑝𝑖: ℤ
+ → 𝑉, let 𝑡𝑖 be the smallest such that

𝑝𝑖 𝑡𝑖 ≡ 𝑝𝑖 𝑡 for all 𝑡 ≥ 𝑡𝑖. Recall that 𝑃 ≔ {𝑝1, … , 𝑝𝑛}.
We want to find

𝑇𝑚𝑖𝑛 ≔ min
𝑃
max
1≤𝑖≤𝑛
𝑡𝑖 ,

and a path set 𝑃 that yields 𝑇𝑚𝑖𝑛. The problem is NP-hard.

Discrete (grid/graph):
Wilson 1974, Goldreich 1984, Kornhauser, Miller, and Spirakis 1984, Ratner and
Warmuth 1990, Silver 2006, Jansen and Sturtevant 2008, Ryan 2008, Standley 2010,
Surynek 2010, Luna and Bekris 2011, Wang and Botea 2011

Continuous:
Erdmann and Lozano-Pérez 1986, Kant and Zucker 1986, O’Donnell and Lozano-Pérez
1989, Švestka and Overmars 1998, LaValle 1995, Peng and Akella 2002, Simeon, Leroy,
and Laumond 2002, Guo and Parker 2003, Ghrist, O’Kane, and LaValle 2004, van den
Berg and Overmars 2005, Peasgood, Clark and McPhee 2008, van den Berg et.al. 2009

𝑠+
𝑠−

𝑢

𝑣

𝑠+
𝑠−

𝑢

𝑣

1

1

1 1

3

1

𝑠+

𝑠−

𝑢

𝑣

1 2 3 4 0

L. R. Ford. and D. R. Fulkerson. Constructing maximal dynamic flows from static flows. Operations Research, 6:419–433,
1958.

Meet Collision

𝑢 𝑤 𝑣

Head-on Collision

𝑢 𝑣

𝑢

𝑤

𝑣

𝑠1
+

𝑢
𝑣

𝑠2
+

𝑠2
−

𝑠1
−

1 1’ 0 2 2’ 3 3’ 4 4’

𝑠1
+ 𝑠2
−

𝑠2
+ 𝑠1

−

𝑢 𝑣

1 2

3

4

2

1

3,4

Theorem: Fixing a natural number 𝑇, the multi-agent
path planning problem admits a solution with at most 𝑇
time steps if and only if the time-expanded network with
𝑇 periods admits a max flow of 𝑛 (the number of agents).

𝑠1
+

𝑠2
+

𝑠2
−

𝑠1
−

1 1’ 0 2 2’ 3 3’ 4 4’

𝑒 1 𝑒 2

𝑥𝑖,𝑗

agent 𝑖

edge 𝑒𝑗

∀𝑒𝑗 , 𝑥𝑖,𝑗

𝑛

𝑖=1

≤ 1

∀𝑣, 𝑥𝑖,𝑗
𝑒𝑗∈𝛿

+(𝑣)

= 𝑥𝑖,𝑗
𝑒𝑗∈𝛿

−(𝑣)

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑥𝑖,𝑖

𝑛

𝑖=1

Pick an initial 𝑇
Build the time-
expanded network

Setup the ILP model

Run an ILP optimizer 𝑥𝑖,𝑖

𝑛

𝑖=1

= 𝑛 ?

No 𝑇 = 𝑇 + 1

Yes

Return the path set

The algorithm is complete since 𝑇 can be upper bounded.

A Motivating Example

9 4

6

8

7 5

3 2

1

4 1

8

9

6 5

2 7

3

4 1

9

7

8 6

5 2

3

1 2

7

4

9 6

5 8

3 1 2

7

4

8 9

6 5

3

Time Optimal Multi-agent Path Planning

1. An equivalence between multi-agent path planning and
multi-commodity network flow.

2. An integer linear programming (ILP) model for finding time
optimal solutions to the multi-agent path planning
problem.

3. Computational applications of the ILP model

 As a complete algorithm;

 As a heuristic for solving larger problems.

Main Results

Related Work

Multi-agent Path Planning and Network Flow

In a basic network flow
problem, we want to find
edge disjoint paths for
transferring commodities.
Maximum flow algorithms
can efficiently solve this
problem.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Research Memorandum RM-1400, The RAND
Corporation, 1954.

The Basic Network Flow Problem

Network Flow Over Time

Basic network flow problems do not consider 𝑡𝑖𝑚𝑒. It is
possible to introduce a set of costs on the edges to
represent transfer time (left). These problems are called
network flow over time and they can be solved using
standard network flow problem over the 𝑡𝑖𝑚𝑒-𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑
𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (right).

The time expansion technique, however, does not handle
collisions by default. For the two types of collisions, extra
efforts are required to prevent them from happening. These
constructs are given below.

Collision Avoidance Constructs

𝑢

𝑣

𝑢

𝑤

𝑣

𝑢

𝑣

tim
e-exp

an
sio

n

co
llisio

n
 p

reven
tio

n

Equivalence Between Multi-agent Path Planning
and Network Flow

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

The Integer Linear Programming Model

𝑥𝑖,𝑗 = 1 → 𝑒𝑗 used by 𝑎𝑖

The Model

Computational Applications

As a Complete Algorithm

𝒏𝟐-puzzles

9 4

6

8

7 5

3 2

1

1 2

7

4

8 9

6 5

3

𝒏𝟐
Average running

time
Average #
of steps

Number of
states

Branching
factor

9 10 seconds 4 105 13

16 2 minutes 6 1013 > 500

25 3 hours 8 1025 > 104

36 > 24 hours ? 1041 > 106

All computation were carried out on an Intel Q6600 PC with 8GB memory using the Gurobi optimizer.

General Path Planning
20 x 15 grid, 5 runs each. Vertices are removed to simulate obstacles.

% obs
Number of agents

10 20 30 40

0 36.2 (20.6) 64.8 (23.6) 229 (26.8) 259 (24.0)

10 31.3 (26.0) 81.9 (26.6) 157 (26.0) 246 (25.6)

20 25.9 (26.4) 57.5 (24.8) 151 (27.0) 539 (29.6)

30 20.2 (28.6) 141 (34.2) 368 (33.0) 1368 (32.7)

40 27.4 (35.0) 572 (42.4) N/A N/A

As a Heuristic for Large Problem Instances

Plan individual
paths

Follow these paths
whenever possible

Detect local
conflicts

Resolve conflicts with
the base algorithm

All Done?

No

Yes
Return the path set

All Done?

No

Yes

32 x 32 grid, 20% obstacles, 100 runs each, 10 seconds cutoff. Local problem size
≤ 8 x 8. Program coded in Java.

Number of agents

25 50 75 100 125

Running time (s) 0.038 0.225 0.732 1.944 4.935

% goals reached 100.0 99.95 99.78 98.84 98.47

Ave. path length 24.61 24.84 25.03 25.52 26.26

Heu. path length 24.6 24.67 24.56 24.60 24.51

% length difference 0.05 0.69 1.91 3.74 7.14

Conclusion and Future Directions

Fast computers Better ILP solvers

Optimal multi-agent
path planning

Network flow methods

Faster algorithms Different optimality
objectives

Better heuristic for
multi-agent path planning

