Automatic analysis of game levels can provide assistance to game designers and procedural content generation. We introduce a static-dynamic scale to categorize level analysis strategies, which captures the extent that the analysis depends on player simulation. Due to its ability to automatically learn intermediate representations for the task, a convolutional neural network (CNN) provides a general tool for both types of analysis. In this paper, we explore the use of CNN to analyze 1,437 Infinite Mario levels. We further propose a deep reinforcement learning technique for dynamic analysis, which allows the simulated player to pay a penalty to reduce error in its control. We empirically demonstrate the effectiveness of our techniques and complementarity of dynamic and static analysis.